galaxy interaction
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

2020 ◽  
Vol 501 (1) ◽  
pp. 219-228
Author(s):  
Q Salomé ◽  
A L Longinotti ◽  
Y Krongold ◽  
C Feruglio ◽  
V Chavushyan ◽  
...  

ABSTRACT The narrow-line Seyfert 1 galaxy IRAS 17020+4544 is one of the few sources where both an X-ray ultrafast outflow and a molecular outflow were observed to be consistent with energy conservation. However, IRAS 17020+4544 is less massive and has a much more modest active galactic nucleus (AGN) luminosity than the other examples. Using recent CO(1–0) observations with the NOrthern Extended Millimeter Array, we characterized the molecular gas content of the host galaxy for the first time. We found that the molecular gas is distributed into an apparent central disc of 1.1 × 109 M⊙, and a northern extension located up to 8 kpc from the centre with a molecular gas mass $M_{\mathrm{ H}_2}\sim 10^8\, \mathrm{ M}_\odot$. The molecular gas mass and the CO dynamics in the northern extension reveal that IRAS 17020+4544 is not a standard spiral galaxy, instead it is interacting with a dwarf object corresponding to the northern extension. This interaction possibly triggers the high accretion rate on to the supermassive black hole. Within the main galaxy, which hosts the AGN, a simple analytical model predicts that the molecular gas may lie in a ring, with less molecular gas in the nuclear region. Such distribution may be the result of the AGN activity that removes or photodissociates the molecular gas in the nuclear region (AGN feedback). Finally, we have detected a molecular outflow of mass $M_{\mathrm{ H}_2}=(0.7\!-\!1.2)\times 10^7\, \mathrm{ M}_\odot$ in projection at the location of the northern galaxy, with a similar velocity to that of the massive outflow reported in previous millimetre data obtained by the Large Millimeter Telescope.


2020 ◽  
Vol 892 (2) ◽  
pp. L20 ◽  
Author(s):  
Shuai Feng ◽  
Shi-Yin Shen ◽  
Fang-Ting Yuan ◽  
Rogemar A. Riffel ◽  
Kaike Pan
Keyword(s):  

2020 ◽  
Vol 494 (2) ◽  
pp. 2785-2797
Author(s):  
S Torres-Flores ◽  
P Amram ◽  
D Olave-Rojas ◽  
N Muñoz-Elgueta ◽  
C Mendes de Oliveira ◽  
...  

ABSTRACT We present new Gemini imaging and spectroscopic data of the system Arp 314, which consists of a triplet of interacting galaxies. This new imagery exhibits tidal tails and stellar bridges between the galaxies' members and confirms the past interactions. Using this data set, we have analysed the physical properties of 22 star-forming regions located in the main disc of these galaxies, as well as in the intergalactic medium. All these regions have emission lines typical of young ages and a couple of them display very high Hα luminosities (LHα ∼ 1040 erg s−1). Using the star-forming regions located in Arp 314-1, we derive its gas-phase oxygen-abundance distribution, which suggests a flatter behaviour than the distribution shown by non-interacting systems. This is in agreement with results obtained for other interacting systems and simulations. The presence of gas flows, as indicated by its complex kinematics, could explain this finding. Most of the star formation in Arp 314-2 is located in a central starburst, where double Hα profiles can be identified, as shown by archival Fabry–Perot data. Additionally, we found that the irregular galaxy Arp 314-3 has a low oxygen abundance. Considering its luminosity, this object has a primordial origin, and it was not formed during the interaction event that this system has experienced.


2019 ◽  
Vol 14 (S353) ◽  
pp. 262-263
Author(s):  
Shuai Feng ◽  
Shi-Yin Shen ◽  
Fang-Ting Yuan

AbstractThe interaction between galaxies is believed to be the main origin of the peculiarities of galaxies. It can disturb not only the morphology but also the kinematics of galaxies. These disturbed and asymmetric features are the indicators of galaxy interaction. We study the velocity field of ionized gas in galaxy pairs based on MaNGA survey. Using the kinemetry package, we fit the velocity field and quantify the degree of kinematic asymmetry. We find that the fraction of high kinematic asymmetry is much higher for galaxy pairs with dp⩽30h−1kpc. Moreover, compared to a control sample of single galaxies, we find that the star formation rate is enhanced in paired galaxies with high kinematic asymmetry. For paired galaxies with low kinematic asymmetry, no significant SFR enhancement has been found. The galaxy pairs with high kinematic asymmetry are more likely to be real interacting galaxies rather than projected pairs.


2018 ◽  
Vol 856 (2) ◽  
pp. 102 ◽  
Author(s):  
Travis C. Fischer ◽  
S. B. Kraemer ◽  
H. R. Schmitt ◽  
L. F. Longo Micchi ◽  
D. M. Crenshaw ◽  
...  

2015 ◽  
Vol 30 (2) ◽  
pp. 463-464
Author(s):  
YONGJUNG KIM ◽  
MYUNGSHIN IM ◽  
CHANGSU CHOI ◽  
MINHEE HYUN ◽  
YONGMIN YOON ◽  
...  
Keyword(s):  

2015 ◽  
Vol 11 (S315) ◽  
pp. 138-141
Author(s):  
Cinthya N. Herrera ◽  
François Boulanger ◽  
Edith G. Falgarone ◽  
Guillaume Pineau des Forêts ◽  
Santiago García-Burillo ◽  
...  

AbstractThe Antennae galaxies are a spectacular example of a burst of star formation triggered by the encounter of two galaxies, being an ideal source to understand how the dynamics of galaxy mergers drives star formation. We present archive ALMA CO(3−2) and VLT near-IR H2spectro-imaging observations, and new ALMA13CO(2−1) and dust continuum observations, at ~50 pc resolution. Combining tracers of density and velocity structure of the gas and its energetics, we demonstrate that star formation involves a complex interplay of merger-driven gas dynamics and turbulence, and the dissipation of the gas kinetic energy. We focus on a compact, bright H2source, associated with cold molecular gas and dust continuum emission, located where the velocity gradient in the interaction region is observed to be the largest. The characteristics of this source suggest that we are witnessing the formation, initiated by turbulent dissipation, of a cloud massive enough (~4×106M⊙) to form a super star cluster within 1 Myr.


2014 ◽  
Vol 4 (4) ◽  
pp. 20140028 ◽  
Author(s):  
Amy Wu ◽  
David Liao ◽  
Thea D. Tlsty ◽  
James C. Sturm ◽  
Robert H. Austin

Preventing relapse is the major challenge to effective therapy in cancer. Within the tumour, stromal (ST) cells play an important role in cancer progression and the emergence of drug resistance. During cancer treatment, the fitness of cancer cells can be enhanced by ST cells because their molecular signalling interaction delays the drug-induced apoptosis of cancer cells. On the other hand, competition among cancer and ST cells for space or resources should not be ignored. We explore the population dynamics of multiple myeloma (MM) versus bone marrow ST cells by using an experimental microecology that we call the death galaxy, with a stable drug gradient and connected microhabitats. Evolutionary game theory is a quantitative way to capture the frequency-dependent nature of interactive populations. Therefore, we use evolutionary game theory to model the populations in the death galaxy with the gradients of pay-offs and successfully predict the future densities of MM and ST cells. We discuss the possible clinical use of such analysis for predicting cancer progression.


Sign in / Sign up

Export Citation Format

Share Document