scholarly journals PKS 2005-489: A very bright BL Lac object in a nearby galaxy

1986 ◽  
Vol 119 ◽  
pp. 59-60
Author(s):  
J V Wall ◽  
I J Danziger ◽  
M Pettini ◽  
R S Warwick ◽  
W Wamsteker

The galaxy identified with the flat-spectrum radio source PKS 2005-489 has a bright stellar nucleus with V ⋍ 13 mag. Optical, UV and X-ray observations indicate variability and power-law continua in each of these wavebands, leading to the conclusion that PKS 2005-489 is one of the brightest BL Lac objects known.

1989 ◽  
Vol 134 ◽  
pp. 197-198
Author(s):  
D. M. Worrall ◽  
B. J. Wilkes

Quasars with similar core-compact radio properties can be classified by their differences at optical and infrared frequencies. Their X-ray properties might be expected to be similar if the synchrotron self-Compton mechanism relates their radio and X-ray emission. We have compared the 0.2–3.5 keV mean power-law energy spectral indices, , for 4 quasar classes: 12 Highly Polarized QSOs (HPQs), 19 Flat Radio Spectrum, core-compact, low-polarization, QSOs (FRS QSOs), 24 radio-selected BL Lac objects, and 7 X-ray-selected BL Lac objects.


1994 ◽  
Vol 159 ◽  
pp. 105-110
Author(s):  
Herman L. Marshall

The first results from surveys performed in the extreme ultraviolet (EUV) will be described in the context of studies of active galaxies and BL Lac objects. About a dozen extra-galactic sources are known so far to emit sufficient EUV radiation that they are detectable even through the Galactic interstellar medium. These results are interpreted in the context of a model of EUV or soft X-ray excesses in the case of AGN. In the case of BL Lac objects, the detections indicate that the steep soft X-ray power law spectra continue into the EUV and that there is little intrinsic gas. Finally, there now exists EUV spectra from the Extreme Ultraviolet Explorer for one BL Lac, PKS 2155-304 and two AGN: Mk 478 and NGC 5548. The spectra show no significant spectral features; for AGN, it indicates that optically thin and emission line models may have a difficult time explaining the EUV and soft X-ray bumps.


1982 ◽  
Vol 97 ◽  
pp. 377-382 ◽  
Author(s):  
Donna Weistrop

CCD photometry of five BL Lac objects indicates that at least three, and possibly four, are located at the centers of giant elliptical galaxies. The redshift for one of these objects, 1218+304, is estimated. A lower limit is placed on the redshift of 1219+28, for which no associated galaxy has been detected. Separation of the galaxy emission from the total observed flux makes possible comparison of the optical — far red flux from the point source alone with radio and X-ray data. This comparison suggests the emission from 1727+50 and 1218+304 can be interpreted as due to direct synchrotron emission. Observations of a small group of galaxies associated with the BL Lac object 1400+162 are also discussed.


1983 ◽  
Vol 104 ◽  
pp. 39-40
Author(s):  
L. Maraschi ◽  
D. Maccagni ◽  
E. G. Tanzi ◽  
M. Tarenghi ◽  
A. Treves

PKS 2155–304 was repeatedly observed in 1979 and 1980 with the International Ultraviolet Explorer. Variations up to a factor of 2 in one year and by 20% in a day are found. The maximum amplitude of variation in X-rays is similar but the timescales are much shorter (a factor of 2 in one day; Urry and Mushotzky, 1982). In all cases the 1200–3100 A continuum is well fitted by a power law with frequency spectral index αUV between −0.7±0.03 and −0.9±0.03. Optical and ultraviolet observations taken within one day show different spectral slopes (Fig. 1). Separate power law fits in the two bands yield αopt = −0.46±0.01 and αUV = −0.80±0.02. The observations by Urry and Mushotzky indicate that the energy distribution steepens further in the soft X-ray region.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 108
Author(s):  
Simona Giacintucci ◽  
Tracy Clarke ◽  
Namir E. Kassim ◽  
Wendy Peters ◽  
Emil Polisensky

We present VLA Low-band Ionosphere and Transient Experiment (VLITE) 338 MHz observations of the galaxy cluster CL 0838+1948. We combine the VLITE data with Giant Metrewave Radio Telescope 610 MHz observations and survey data. The central galaxy hosts a 250 kpc source whose emission is dominated by two large lobes at low frequencies. At higher frequencies, a pair of smaller lobes (∼30 kpc) is detected within the galaxy optical envelope. The observed morphology is consistent with a restarted radio galaxy. The outer lobes have a spectral index αout=1.6, indicating that they are old, whereas the inner lobes have αinn=0.6, typical for an active source. Spectral modeling confirms that the outer emission is a dying source whose nuclear activity switched off not more than 110 Myr ago. Using archival Chandra X-ray data, we compare the radio and hot gas emission. We find that the active radio source is contained within the innermost and X-ray brightest region, possibly a galactic corona. Alternatively, it could be the remnant of a larger cool core whose outer layers have been heated by the former epoch of activity that has generated the outer lobes.


2005 ◽  
pp. 281-289 ◽  
Author(s):  
D. Maccagni ◽  
B. Garilli ◽  
P. Barr ◽  
P. Giommi ◽  
A. Pollock
Keyword(s):  
X Ray ◽  

1982 ◽  
pp. 383-384
Author(s):  
Daniel A. Schwartz ◽  
Greg Madejski ◽  
William H.-M. Ku
Keyword(s):  
X Ray ◽  

1975 ◽  
Vol 2 (6) ◽  
pp. 366-367 ◽  
Author(s):  
B.A. Peterson ◽  
R.J. Dickens ◽  
R.D. Cannon

The radio source, Cen A, is large and complex with many peaks in the brightness distribution over an area about 4 x 10 degrees. The peculiar elliptical galaxy NGC 5128 lies between the two strong inner radio brightness peaks and is centred on a weaker central radio source. This radio source is in the centre of the dust lane which divides the galaxy and may be related to the infrared, X-ray and γ-ray sources.


2020 ◽  
Vol 496 (4) ◽  
pp. 5518-5527
Author(s):  
N Sahakyan

ABSTRACT The origin of the multiwavelength emission from the high-synchrotron-peaked BL Lac 1ES 1218+304 is studied using the data from SwiftUVOT/XRT, NuSTAR, and Fermi-LAT. A detailed temporal and spectral analysis of the data observed during 2008–2020 in the  γ-ray (>100 MeV), X-ray (0.3–70 keV), and optical/UV bands is performed. The γ-ray spectrum is hard with a photon index of 1.71 ± 0.02 above 100 MeV. The SwiftUVOT/XRT data show a flux increase in the UV/optical and X-ray bands; the highest 0.3–3 keV X-ray flux was (1.13 ± 0.02) × 10−10 erg cm−2 s−1. In the 0.3–10 keV range, the averaged X-ray photon index is >2.0 which softens to 2.56 ± 0.028 in the 3–50 keV band. However, in some periods, the X-ray photon index became extremely hard (<1.8), indicating that the peak of the synchrotron component was above 1 keV, and so 1ES 1218+304 behaved like an extreme synchrotron BL Lac. The hardest X-ray photon index of 1ES 1218+304 was 1.60 ± 0.05 on MJD 58489. The time-averaged multiwavelength spectral energy distribution is modelled within a one-zone synchrotron self-Compton leptonic model using a broken power law and power law with an exponential cutoff electron energy distributions. The data are well explained when the electron energy distribution is $E_{\rm e}^{-2.1}$ extending up to γbr/cut ≃ (1.7 − 4.3) × 105, and the magnetic field is weak (B ∼ 1.5 × 10−2 G). By solving the kinetic equation for electron evolution in the emitting region, the obtained electron energy distributions are discussed considering particle injection, cooling, and escape.


Sign in / Sign up

Export Citation Format

Share Document