ultraviolet observations
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 22)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Vol 918 (1) ◽  
pp. L18
Author(s):  
R. Ramesh ◽  
C. Kathiravan ◽  
N. P. S. Mithun ◽  
S. V. Vadawale

2021 ◽  
Author(s):  
Lorenz Roth ◽  
Nickolay Ivchenko ◽  
Randy Gladstone ◽  
Joachim Saur ◽  
Denis Grodent ◽  
...  

<p>Ganymede’s tenuous atmosphere is produced by charged particle sputtering and sublimation of its icy surface. Previous far-ultraviolet observations of the OI1356 Å and OI1304 Å oxygen emissions were used to derive sputtered molecular oxygen, O<sub>2,</sub> as an atmospheric constituent. We present a new analysis of high-sensitivity spectra and spectral images of Ganymede’s oxygen emissions acquired by the COS and STIS instruments on the Hubble Space Telescope. The COS eclipse observations constrain atomic oxygen, O, to be at least two orders of magnitude less abundant than O<sub>2</sub>. We then show that dissociative excitation of water vapor, H<sub>2</sub>O, is found to increase the OI1304 Å emissions relative to the OI1356 Å emissions around the sub-solar point, where H<sub>2</sub>O is more abundant than O<sub>2</sub>. Away from the sub-solar region, the emissions are more than two times brighter at OI1356 Å than at OI1304 Å, and O<sub>2</sub> prevails as found in previous analyses. A ~6-fold higher H<sub>2</sub>O/O<sub>2</sub> mixing ratio on the warmer trailing hemisphere compared to the colder leading hemisphere, a spatial concentration at the sub-solar region, and the ratio-estimated H<sub>2</sub>O densities identify icy surface sublimation as a local dayside atmospheric source.<br />Our analysis provides the first evidence for a sublimated atmosphere on an icy moon in the outer solar system.</p>


2021 ◽  
Author(s):  
Eri Tatsumi ◽  
Julia de León ◽  
Marcel Popescu ◽  
Javier Licandro ◽  
Fernando Tinaut

2021 ◽  
Vol 911 (2) ◽  
pp. L25
Author(s):  
Meredith A. MacGregor ◽  
Alycia J. Weinberger ◽  
R. O. Parke Loyd ◽  
Evgenya Shkolnik ◽  
Thomas Barclay ◽  
...  

2021 ◽  
Author(s):  
Michaela Mooney ◽  
Colin Forsyth ◽  
Mike Marsh ◽  
Jonathan Rae

<p>Identifying the plasmapause location is crucial for forecasting and modelling the radiation belts, as well as larger scale models of the magnetosphere. The ionospheric footpoints of the plasmapause are thought to map to the equatorward edge of the diffuse aurora, with the first direct observation of an undulation of the plasmapause boundary and corresponding auroral features reported by He et al. (2020). Despite the importance of the plasmapause location, we do not have global observations of the plasmapause location.</p><p>We provide a new statistical model of the plasmapause location determined from mapping the equatorward boundary of the observed auroral oval out to the inner magnetosphere. The model uses the equatorward boundary of the auroral oval determined from far-ultraviolet observations from the IMAGE spacecraft from Longden et al. (2010) to provide a statistical estimate of the plasmapause location for different levels of geomagnetic activity. Comparing the results of the statistical plasmapause model to other more direct measurements of the plasmapause shows a good agreement in the nightside local time sectors. </p><p>The results of this analysis show that the equatorward boundary of the auroral oval statistically maps closely to the plasmapause boundary the nightside sectors and provides an alternative use for global auroral image data from the upcoming SMILE mission. </p>


2020 ◽  
Vol 500 (4) ◽  
pp. 5639-5656
Author(s):  
P J Vallely ◽  
C S Kochanek ◽  
K Z Stanek ◽  
M Fausnaugh ◽  
B J Shappee

ABSTRACT We present observations from the Transiting Exoplanet Survey Satellite (TESS) of twenty bright core-collapse supernovae with peak TESS-band magnitudes ≲18 mag. We reduce this data with an implementation of the image subtraction pipeline used by the All-Sky Automated Survey for Supernovae (ASAS-SN) optimized for use with the TESS images. In empirical fits to the rising light curves, we do not find strong correlations between the fit parameters and the peak luminosity. Existing semi-analytic models fit the light curves of the Type II supernovae well, but do not yield reasonable estimates of the progenitor radius or explosion energy, likely because they are derived for use with ultraviolet observations while TESS observes in the near-infrared. If we instead fit the data with numerically simulated light curves, the rising light curves of the Type II supernovae are consistent with the explosions of red supergiants. While we do not identify shock breakout emission for any individual event, when we combine the fit residuals of the Type II supernovae in our sample, we do find a >5σ flux excess in the ∼1 d before the start of the light-curve rise. It is likely that this excess is due to shock breakout emission, and that during its extended mission TESS will observe a Type II supernova bright enough for this signal to be detected directly.


Sign in / Sign up

Export Citation Format

Share Document