The Application of the Study of Galaxies Associated With Quasars to Observational Cosmology

1987 ◽  
Vol 124 ◽  
pp. 685-689
Author(s):  
H.K.C. Yee

CCD direct imaging of fields around quasars is used as a method for locating galaxy clusters and groups associated with quasars. Average galaxy counts in the sky obtained from control fields are used to correct for background galaxies in the quasar fields. This correction allows one to derive the luminosity function (LF) of the associated galaxies at the redshifts of the quasars. It is demonstrated that using the derived LF and average galaxy count data, self-consistent models of the evolution of the LF and galaxy counts can be obtained. Current data are best fitted, with a large uncertainty, by a qo between 0.0 and 0.5 and an evolution in M* of −0.9±0.5 mag. It is found that the average environment of radio-loud quasars at z∼0.6 is about three times richer in galaxies than that of quasars at z∼0.4.

2012 ◽  
Vol 2 (7) ◽  
pp. 15-18
Author(s):  
Mariwan A. Rasheed ◽  
◽  
Mohamad A. Brza

2019 ◽  
Vol 490 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Devansh Agarwal ◽  
Duncan R Lorimer ◽  
Anastasia Fialkov ◽  
Keith W Bannister ◽  
Ryan M Shannon ◽  
...  

ABSTRACT The rate of fast radio bursts (FRBs) in the direction of nearby galaxy clusters is expected to be higher than the mean cosmological rate if intrinsically faint FRBs are numerous. In this paper, we describe a targeted search for faint FRBs near the core of the Virgo Cluster using the Australian Square Kilometre Array Pathfinder telescope. During 300 h of observations, we discovered one burst, FRB 180417, with dispersion measure (DM) = 474.8 cm−3 pc. The FRB was promptly followed up by several radio telescopes for 27 h, but no repeat bursts were detected. An optical follow-up of FRB 180417 using the PROMPT5 telescope revealed no new sources down to an R-band magnitude of 20.1. We argue that FRB 180417 is likely behind the Virgo Cluster as the Galactic and intracluster DM contribution are small compared to the DM of the FRB, and there are no galaxies in the line of sight. The non-detection of FRBs from Virgo constrains the faint-end slope, α < 1.52 (at 68 per cent confidence limit), and the minimum luminosity, Lmin ≳ 2 × 1040 erg s−1 (at 68 per cent confidence limit), of the FRB luminosity function assuming cosmic FRB rate of 104 FRBs per sky per day with flux above 1 Jy located out to redshift of 1. Further FRB surveys of galaxy clusters with high-sensitivity instruments will tighten the constraints on the faint end of the luminosity function and, thus, are strongly encouraged.


2002 ◽  
Vol 187 ◽  
pp. 129-138
Author(s):  
M. Hattori

Looking for and studying very distant galaxy clusters, clusters at z > 1, are one of the prime subjects of the modern observational cosmology. If the metallicity of the hot intra-cluster medium in very distant galaxy clusters is measured for example, it provides fruitful informations for us to understand the formation and evolution of galaxies. However, difficulty of the study is that there is few confirmed very distant galaxy clusters yet. We first have to search for very distant clusters but it requires very deep observations. A random selection of sky is not practical. We have to select the sky. In this article, it is demonstrated that missing lens problem has close connection with very distant cluster of galaxies and dark lens searches could open a new window for studying very distant cluster of galaxies.


2012 ◽  
Vol 27 (06) ◽  
pp. 1250024 ◽  
Author(s):  
JIE LIU ◽  
QIANG YUAN ◽  
XIAOJUN BI ◽  
HONG LI ◽  
XINMIN ZHANG

A self-consistent global fitting method based on the Markov Chain Monte Carlo technique to study the dark matter (DM) property associated with the cosmic ray electron/positron excesses was developed in our previous work. In this work we further improve the previous study to include the hadronic branching ratio of DM annihilation/decay. The PAMELA [Formula: see text] data are employed to constrain the hadronic branching ratio. We find that the 95% (2σ) upper limits of the quark branching ratio allowed by the PAMELA [Formula: see text] data is ~0.032 for DM annihilation and ~0.044 for DM decay, respectively. This result shows that the DM coupling to pure leptons is indeed favored by the current data. Based on the global fitting results, we further study the neutrino emission from DM in the galactic center. Our predicted neutrino flux is some smaller than previous works since the constraint from γ-rays is involved. However, it is still capable to be detected by the forthcoming neutrino detector such as IceCube. The improved points of the present study compared with previous works include: (1) the DM parameters, both the particle physical ones and astrophysical ones, are derived in a global fitting way, (2) constraints from various species of data sets, including γ-rays and antiprotons are included, and (3) the expectation of neutrino emission is fully self-consistent.


1998 ◽  
Vol 11 (1) ◽  
pp. 487-491
Author(s):  
J. Huchra ◽  
E. Tollestrup ◽  
S. Schneider ◽  
M. Skrutski ◽  
T. Jarrett ◽  
...  

With the current convergence of determinations of the Hubble Constant (e.g. The Extragalactic Distance Scale, 1997, Livio, Donahue and Panagia, eds.) to values within ±25% rather than a factor of two, and the clear possibility of determining q0 using high redshift supernovae (Garnavich et al. 1998), the major remaining problem in observational cosmology is the determination of Ω — what is the dark matter, how much is there, and how is it distributed? The most direct approach to the last two parts of the question has been to study galaxy dynamics, first through the motions of galaxies in binaries, groups and clusters, and in the last decade and a half, driven by the observation of our motion w.r.t. the Cosmic Microwave Background (CMB) and thenotion that DM must be clumped on larger scales than galaxy clusters if (Ω is to be unity, through the study of large scale galaxy flows. The ratio of the mass density to the closure mass density, Ω, is thought by most observers to be ~0.1-0.3, primarily based on the results of dynamical measurements of galaxy clusters and, more recently, gravitational lensing studies of clusters. In contrast, most theoretical cosmologists opt for a high density universe, Ω = 1.0, based on the precepts of the inflation scenario, the difficulty of forming galaxies in low density models given the observed smoothness of the microwave background radiation, and the observational evidence from the matching of the available large scale flow measurements (and the absolute microwave background dipole velocity) to the local density field. However this last result is extremely controversial—matching the velocity field to the density field derived from IRAS (60μ) selected galaxy samples yields high Ω values (e.g., Dekel et al. 1993) but matching to optically selected samples yields low values (Hudson 1994; Lahav et al. 1994; Santiago et al. 1995). On small scales, the high Ω camp argues that the true matter distribution is much more extended than the distribution of galaxies, so the dynamical mass estimates are biased low.


2005 ◽  
Vol 20 (14) ◽  
pp. 2931-2942
Author(s):  
JOSEPH FOWLER

The latest cosmological data point to a model of the universe that is self-consistent but deeply weird. It seems that most matter in our universe is non-baryonic and hidden from direct view. Meanwhile, a repulsive "dark energy" causes the expansion of the universe to proceed at an accelerating rate. Sources of current data include studies of the distribution of matter in the universe, the anisotropies of the cosmic microwave background radiation, and the Hubble expansion law as probed by distant supernovae. In the near future, we can hope that measurements like these will begin to illuminate the nature of dark energy, starting with the question of whether it behaves like a cosmological constant or shows a more complicated evolution.


Sign in / Sign up

Export Citation Format

Share Document