scholarly journals Galactic Dynamos Without Sharp Boundaries: Non-Axisymmetric Fields in Axisymmetric Disks?

1990 ◽  
Vol 140 ◽  
pp. 115-116
Author(s):  
R. Meinel ◽  
D. Elstner ◽  
G. Rüdiger ◽  
F. Krause

Radio polarization observations of spiral galaxies suggest the existence of large-scale galactic magnetic fields which are of either axisymmetric -spiral (ASS) or bisymmetric-spiral (BSS), i.e. non-axisymmetric, structure (cf. Beck, 1939). Clear evidence for a BSS field was indicated for M31 by M. Krause et al. (1989).

1991 ◽  
Vol 9 (1) ◽  
pp. 95-97
Author(s):  
S. J. Spencer

AbstractGlobal magnetic structure has been inferred in spiral galaxies from radio and optical observations. The author has developed a three dimensional, quasi-global kinematic dynamo model which demonstrates the possibility of maintaining large-scale magnetic fields by the αω mechanism. Analytical expressions for large-scale galactic magnetic fields near temporal steady states have been derived. Illustrations of the spatial distribution of vector and absolute large-scale magnetic field strength are presented. When coupled with observations this model may help in understanding the maintenance and morphologies inferred for disk and halo global magnetic fields in spiral galaxies.


2010 ◽  
Vol 6 (S271) ◽  
pp. 135-144
Author(s):  
Ellen G. Zweibel

AbstractThe origin and evolution of magnetic fields in the Universe is a cosmological problem. Although exotic mechanisms for magneotgenesis cannot be ruled out, galactic magnetic fields could have been seeded by magnetic fields from stars and accretion disks, and must be continuously regenerated due to the ongoing replacement of the interstellar medium. Unlike stellar dynamos, galactic dynamos operate in a multicomponent gas at low collisionality and high magnetic Prandtl number. Their background turbulence is highly compressible, the plasma β ~ 1, and there has been time for only a few large exponentiation times at large scale over cosmic time. Points of similarity include the importance of magnetic buoyancy, the large range of turbulent scales and tiny microscopic scales, and the coupling between the magnetic field and certain properties of the flow. Understanding the origin and maintenance of the large scale galactic magnetic field is the most challenging aspect of the problem.


1991 ◽  
Vol 144 ◽  
pp. 267-280 ◽  
Author(s):  
Rainer Beck

Spiral galaxies host interstellar magnetic fields of 4-15 μG total strength. A significant fraction of the field lines shows large-scale structures. At face-on or moderately inclined view, the field lines run generally parallel to the spiral arms, either with uniform direction with respect to azimuthal angle (axisymmetric spiral, ASS), with one reversal along azimuthal angle (bisymmetric spiral, BSS), or with spiral orientation without dominating direction.At edge-on view, the field is concentrated in a thin disk, often surrounded by a thick radio disk with field lines mostly parallel to the plane, similar to the quadrupole-type dynamo field. Radio polarization data from NGC891 indicate that the thermal gas seen in Hα is responsible for Faraday depolarization. The required scaleheight of the field of ~4 kpc is comparable to the value expected in case of energy equipartition between magnetic fields and cosmic rays. The interacting edge-on galaxy NGC 4631 shows a much larger radio halo with field lines perpendicular to the disk, possibly driven by a strong galactic wind or the result of a dipole-type halo field.Field lines bending out of the plane are also visible in face-on galaxies as regions with high rotation measures and low star-formation activity. The resemblance to the phenomenon of the solar corona suggests to call them “galactic coronal holes”.


1990 ◽  
Vol 140 ◽  
pp. 83-89
Author(s):  
A.A. Ruzmaikin

The fast dynamo acting in a turbulent flow explains the origin of magnetic fields in astrophysical objects. Stellar cycles and large-scale magnetic fields in spiral galaxies reflect the behaviour of a mean magnetic field. Intermittent magnetic structures in clusters of galaxies are associated with random magnetic field.


2009 ◽  
Vol 703 (1) ◽  
pp. L90-L93 ◽  
Author(s):  
Eduardo Battaner ◽  
Joaquín Castellano ◽  
Manuel Masip

2002 ◽  
Vol 12 ◽  
pp. 712-715 ◽  
Author(s):  
Rainer Beck

AbstractMagnetic fields are anchored in gas clouds. Field lines are tangled in spiral arms, but highly regularbetweenthe arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamics of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.


2012 ◽  
Vol 8 (S294) ◽  
pp. 213-224 ◽  
Author(s):  
JinLin Han

AbstractMagnetic fields in our Galaxy and nearby galaxies have been revealed by starlight polarization, polarized emission from dust grains and clouds at millimeter and submillimeter wavelength, the Zeeman effect of spectral lines or maser lines from clouds or clumps, diffuse radio synchrotron emission from relativistic electrons in interstellar magnetic fields, and the Faraday rotation of background radio sources as well as pulsars for our Milky Way. It is easy to get a global structure for magnetic fields in nearby galaxies, while we have observed many details of magnetic fields in our Milky Way, especially by using pulsar rotation measure data. In general, magnetic fields in spiral galaxies probably have a large-scale structure. The fields follow the spiral arms with or without the field direction reversals. In the halo of spiral galaxies magnetic fields exist and probably also have a large-scale structure as toroidal and poloidal fields, but seem to be slightly weaker than those in the disk. In the central region of some galaxies, poloidal fields have been detected as vertical components. Magnetic field directions in galaxies seem to have been preserved during cloud formation and star formation, from large-scale diffuse interstellar medium to molecular clouds and then to the cloud cores in star formation regions or clumps for the maser spots. Magnetic fields in galaxies are passive to dynamics.


1993 ◽  
Vol 157 ◽  
pp. 333-337
Author(s):  
Karl Johan Donner ◽  
Axel Brandenburg ◽  
Magnus Thomasson

We discuss some aspects of the interrelationship between the dynamo problem for galaxies and their dynamics. First, we consider the generation of magnetic fields in the presence of fountain flows and galactic winds. Next, we discuss the distortion of a steady magnetic field by tidal effects and other transient spiral features. Finally, we give an expression for the amplitude of density waves generated by large-scale non-axisymmetric fields.


Galaxies ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Rainer Beck ◽  
Luke Chamandy ◽  
Ed Elson ◽  
Eric G. Blackman

Constraining dynamo theories of magnetic field origin by observation is indispensable but challenging, in part because the basic quantities measured by observers and predicted by modelers are different. We clarify these differences and sketch out ways to bridge the divide. Based on archival and previously unpublished data, we then compile various important properties of galactic magnetic fields for nearby spiral galaxies. We consistently compute strengths of total, ordered, and regular fields, pitch angles of ordered and regular fields, and we summarize the present knowledge on azimuthal modes, field parities, and the properties of non-axisymmetric spiral features called magnetic arms. We review related aspects of dynamo theory, with a focus on mean-field models and their predictions for large-scale magnetic fields in galactic discs and halos. Furthermore, we measure the velocity dispersion of H i gas in arm and inter-arm regions in three galaxies, M 51, M 74, and NGC 6946, since spiral modulation of the root-mean-square turbulent speed has been proposed as a driver of non-axisymmetry in large-scale dynamos. We find no evidence for such a modulation and place upper limits on its strength, helping to narrow down the list of mechanisms to explain magnetic arms. Successes and remaining challenges of dynamo models with respect to explaining observations are briefly summarized, and possible strategies are suggested. With new instruments like the Square Kilometre Array (SKA), large data sets of magnetic and non-magnetic properties from thousands of galaxies will become available, to be compared with theory.


2010 ◽  
Vol 6 (S274) ◽  
pp. 381-384
Author(s):  
Katarzyna Otmianowska-Mazur ◽  
Katarzyna Kulpa-Dybeł ◽  
Barbara Kulesza-Żydzik ◽  
Hubert Siejkowski ◽  
Grzegorz Kowal

AbstractWe present the results of the three-dimensional, fully non-linear MHD simulations of the large-scale magnetic field evolution in a barred galaxy with the back reaction of magnetic field to gas. We also include the process of the cosmic-ray driven dynamo. In addition, we check what physical processes are responsible for the magnetic field evolution in the tidally influenced spiral galaxies. We solve the MHD equations for the gas and magnetic field in a spiral galaxy with gravitationally prescribed bulge, disk and halo which travels along common orbit with the second body. In order to compare our modeling results with the observations we also construct the maps of high-frequency (Faraday rotation-free) polarized radio emission from the simulated magnetic fields. The model accounts for the effects of projection and limited resolution.We found that the obtained magnetic field configurations are highly similar to the observed maps of the polarized intensity of barred galaxies, because the modeled vectors form coherent structures along the bar and spiral arms. We also found a physical explanation of the problem of inconsistency between the velocity and magnetic fields character present in this type of galaxies. Due to the dynamical influence of the bar, the gas forms spiral waves which go radially outward. Each spiral arm forms the magnetic arm which stays much longer in the disk than the gaseous spiral structure. The modeled total energy of magnetic field and magnetic flux grows exponentially due to the action of the cosmic-ray driven dynamo. We also obtained the polarization maps of tidally influenced spiral galaxies which are similar to observations.


Sign in / Sign up

Export Citation Format

Share Document