energy equipartition
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 5)

2021 ◽  
Vol 263 (3) ◽  
pp. 3824-3832
Author(s):  
Guang Zhu ◽  
Laurent Maxit ◽  
Nicolas Totaro ◽  
Alain Le Bot

Statistical modal Energy distribution Analysis (SmEdA) was developed from classical Statistical Energy Analysis (SEA). It allows computing power flow between coupled subsystems from the deterministic modes of uncoupled subsystems without assuming the SEA modal energy equipartition. SmEdA is well adapted in mid-frequency when the subsystems have not a very high modal density. However, for some systems e.g. the plate-cavity system, one subsystem can exhibit a low modal density while the other one a high one. The goal of the paper is then to propose an extension of SmEdA formulation that allows describing one subsystem by its deterministic modes, and the other one as a diffuse field statistically supposing modal energy equipartition. The uncertain subsystem is then characterized by sets of natural frequencies and mode shapes constructed based on Gaussian Orthogonal Ensemble matrix and the cross-spectrum density of a diffuse field, respectively. This formulation permits not only the computation of mean noise response but also the variance generated by the uncertainties and furthermore without bringing in much computation. It is demonstrated that the obtained analytical results from the proposed hybrid SmEdA/SEA are consistent with numerical results computed by FEM with an appropriate degree of uncertainty.


2021 ◽  
Vol 504 (1) ◽  
pp. L12-L16
Author(s):  
Václav Pavlík ◽  
Enrico Vesperini

ABSTRACT We present the results of a study aimed at exploring the evolution towards energy equipartition in star cluster models with different initial degrees of anisotropy in the velocity distribution. Our study reveals a number of novel aspects of the cluster dynamics and shows that the rate of evolution towards energy equipartition (i) depends on the initial degree of radial velocity anisotropy – it is more rapid for more radially anisotropic systems; and (ii) differs for the radial and the tangential components of the velocity dispersion. (iii) The outermost regions of the initially isotropic system evolve towards a state of ‘inverted’ energy equipartition in which high-mass stars have a larger velocity dispersion than low-mass stars – this inversion originates from the mass dependence of the tangential velocity dispersion whereas the radial velocity dispersion shows no anomaly. Our results add new fundamental elements to the theoretical framework needed to interpret the wealth of recent and upcoming observational studies of stellar kinematics in globular clusters, and shed further light on the link between the clusters’ internal kinematics, their formation, and evolutionary history.


Author(s):  
L. Borcea ◽  
J. Garnier ◽  
K. Sølna

We derive a radiative transfer equation that accounts for coupling from surface waves to body waves and the other way around. The model is the acoustic wave equation in a two-dimensional waveguide with reflecting boundary. The waveguide has a thin, weakly randomly heterogeneous layer near the top surface, and a thick homogeneous layer beneath it. There are two types of modes that propagate along the axis of the waveguide: those that are almost trapped in the thin layer, and thus model surface waves, and those that penetrate deep in the waveguide, and thus model body waves. The remaining modes are evanescent waves. We introduce a mathematical theory of mode coupling induced by scattering in the thin layer, and derive a radiative transfer equation which quantifies the mean mode power exchange. We study the solution of this equation in the asymptotic limit of infinite width of the waveguide. The main result is a quantification of the rate of convergence of the mean mode powers toward equipartition.


2021 ◽  
Vol 502 (3) ◽  
pp. 4290-4304
Author(s):  
Enrico Vesperini ◽  
Jongsuk Hong ◽  
Mirek Giersz ◽  
Arkadiusz Hypki

ABSTRACT We have carried out a set of Monte Carlo simulations to study a number of fundamental aspects of the dynamical evolution of multiple stellar populations in globular clusters with different initial masses, fractions of second generation (2G) stars, and structural properties. Our simulations explore and elucidate: (1) the role of early and long-term dynamical processes and stellar escape in the evolution of the fraction of 2G stars and the link between the evolution of the fraction of 2G stars and various dynamical parameters; (2) the link between the fraction of 2G stars inside the cluster and in the population of escaping stars during a cluster’s dynamical evolution; (3) the dynamics of the spatial mixing of the first-generation (1G) and 2G stars and the details of the structural properties of the two populations as they evolve toward mixing; (4) the implications of the initial differences between the spatial distribution of 1G and 2G stars for the evolution of the anisotropy in the velocity distribution and the expected radial profile of the 1G and 2G anisotropy for clusters at different stages of their dynamical history; and (5) the variation of the degree of energy equipartition of the 1G and the 2G populations as a function of the distance from the cluster’s centre and the cluster’s evolutionary phase.


2021 ◽  
Vol 502 (1) ◽  
pp. 1218-1245
Author(s):  
Erik Rosolowsky ◽  
Annie Hughes ◽  
Adam K Leroy ◽  
Jiayi Sun ◽  
Miguel Querejeta ◽  
...  

ABSTRACT We present improved methods for segmenting CO emission from galaxies into individual molecular clouds, providing an update to the cprops algorithms presented by Rosolowsky & Leroy. The new code enables both homogenization of the noise and spatial resolution among data, which allows for rigorous comparative analysis. The code also models the completeness of the data via false source injection and includes an updated segmentation approach to better deal with blended emission. These improved algorithms are implemented in a publicly available Python package, pycprops. We apply these methods to 10 of the nearest galaxies in the PHANGS-ALMA survey, cataloguing CO emission at a common 90 pc resolution and a matched noise level. We measure the properties of 4986 individual clouds identified in these targets. We investigate the scaling relations among cloud properties and the cloud mass distributions in each galaxy. The physical properties of clouds vary among galaxies, both as a function of galactocentric radius and as a function of dynamical environment. Overall, the clouds in our target galaxies are well-described by approximate energy equipartition, although clouds in stellar bars and galaxy centres show elevated line widths and virial parameters. The mass distribution of clouds in spiral arms has a typical mass scale that is 2.5× larger than interarm clouds and spiral arms clouds show slightly lower median virial parameters compared to interarm clouds (1.2 versus 1.4).


2020 ◽  
Vol 501 (1) ◽  
pp. 664-675
Author(s):  
Li Xue ◽  
Cheng-Liang Jiao ◽  
Yuan Li

ABSTRACT We run 3D numerical simulations for the accretion flow around the white dwarf (WD) in the progenitor system of Tycho’s supernova (SN). The mass of the WD, mass of the companion star, and the orbital period are set to be 1M⊙, 1.6M⊙, and 0.794 d, respectively, based on theoretical and observational researches of Tycho’s SN remnant (SNR). We find that when the magnetic field in the accreted material is negligible, outflowing wind is concentrated near the equatorial plane. When the magnetic field has energy equipartition with internal energy, polar wind is comparable with the equatorial wind. A carefully chosen magnetic field between the above two cases ($B=5.44\times 10^3 \rm {G}$) can roughly reproduce the latitude-dependent wind required to form the peculiar periphery of Tycho’s SNR. Including a reasonable amount of viscosity in the calculation does not change our conclusion.


2020 ◽  
Vol 15 (S359) ◽  
pp. 175-177
Author(s):  
Stela Adduci Faria ◽  
Elisabete M. de Gouveia Dal Pino ◽  
Paramita Barai

AbstractThe Intergalactic Medium (IGM) is the region comprising the environment between the galaxies. Gamma-ray observations have provided lower limits to IGM magnetic fields of the order of ≳10–16 G. Magnetic fields are continuously ejected from galaxies by jets and galactic winds. However, the origin and evolution of cosmic magnetic fields in the more diffuse regions, like voids, is still debated. The difficulties in directly measuring magnetic fields and their coherent scales, make hydrodynamic and magnetohydrodynamic (MHD) cosmological simulations useful tools to shed light on this debate. As a first approach, we have performed hydrodynamic cosmological simulations assuming energy equipartition as an initial condition between the baryonic gas and the magnetic field, starting at z = 8, to track the evolution of magnetic fields, and compare with results of MHD simulations. We have found that for halos and cores, our results are comparable to the MHD description. For the less dense regions, the equipartition condition clearly overestimates the observed limits. In forthcoming work, we will investigate MHD simulations of cosmological evolution and amplification of seed magnetic fields, considering all relevant feedback processes and exploring turbulent dynamo amplification versus primordial mechanisms across cosmological timescales.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Alexander Osinsky ◽  
Anna S. Bodrova ◽  
Nikolai V. Brilliantov

2019 ◽  
Vol 492 (1) ◽  
pp. 549-555 ◽  
Author(s):  
I M Christie ◽  
M Petropoulou ◽  
L Sironi ◽  
D Giannios

ABSTRACT Blazar emission models based on magnetic reconnection succeed in reproducing many observed spectral and temporal features, including the short-duration luminous flaring events. Plasmoids, a self-consistent by-product of the tearing instability in the reconnection layer, can be the main source of blazar emission. Kinetic simulations of relativistic reconnection have demonstrated that plasmoids are characterized by rough energy equipartition between their radiating particles and magnetic fields. This is the main reason behind the apparent shortcoming of plasmoid-dominated emission models to explain the observed Compton ratios of BL Lac objects. Here, we demonstrate that the radiative interactions among plasmoids, which have been neglected so far, can assist in alleviating this contradiction. We show that photons emitted by large, slow-moving plasmoids can be a potentially important source of soft photons to be then upscattered, via inverse Compton, by small fast-moving, neighbouring plasmoids. This interplasmoid Compton scattering process can naturally occur throughout the reconnection layer, imprinting itself as an increase in the observed Compton ratios from those short and luminous plasmoid-powered flares within BL Lac sources, while maintaining energy equipartition between radiating particles and magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document