scholarly journals Local Variations of the Velocity Ellipsoid

1996 ◽  
Vol 169 ◽  
pp. 525-526
Author(s):  
M. Moreno ◽  
J. Torra ◽  
E. Oblak

We have analyzed the distribution of residual velocities of nearby stars (within 200 pc of the Sun) looking for space variations on the velocity ellipsoid. We used a sample of 1071 main sequence stars of spectral types B, A and F selected from the Hipparcos Input Catalogue [7] with uvbyHβ photometric data. Ages have been calculated following [1]. Six subsamples with 8.07 ≤ log(age) ≤ 9.45 have been considered.

1996 ◽  
Vol 169 ◽  
pp. 513-514
Author(s):  
B. Chen ◽  
F. Figueras ◽  
J. Torra ◽  
R. Asiain ◽  
C. Jordi

A powerful moving group-finding algorithm has been developed and applied to a large sample of B, A and F main sequence stars from the Hipparcos Input Catalogue. Four moving groups near the Sun (Pleiades, Sirius, IC2391 and Hyades) have been identified without assuming any a priori knowledge of the properties of moving groups. This is the most convincing objective evidence for their existence. After the members of the moving groups are removed from the sample, we investigate the disk heating problem. The results show that the velocity dispersion of the local disk stars increases with age, roughly as ≃ ∞ τ1/5.


1966 ◽  
Vol 24 ◽  
pp. 40-43
Author(s):  
O. C. Wilson ◽  
A. Skumanich

Evidence previously presented by one of the authors (1) suggests strongly that chromospheric activity decreases with age in main sequence stars. This tentative conclusion rests principally upon a comparison of the members of large clusters (Hyades, Praesepe, Pleiades) with non-cluster objects in the general field, including the Sun. It is at least conceivable, however, that cluster and non-cluster stars might differ in some fundamental fashion which could influence the degree of chromospheric activity, and that the observed differences in chromospheric activity would then be attributable to the circumstances of stellar origin rather than to age.


1983 ◽  
Vol 66 ◽  
pp. 469-486
Author(s):  
Jørgen Christensen-Dalsgaard ◽  
Søren Frandsen

AbstractEstimates are given for the amplitudes of stochastically excited oscillations in Main Sequence stars and cool giants; these were obtained using the equipartition between convective and pulsational energy which was originally proposed by Goldreich and Keeley. The amplitudes of both velocity and luminosity perturbation generally increase with increasing mass along the Main Sequence as long as convection transports a major fraction of the total flux, and the amplitudes also increase with the age of the model. The 1.5 Mʘ ZAMS model, of spectral type F0, has velocity amplitudes ten times larger than those found in the Sun. For very luminous red supergiants luminosity amplitudes of up to about 0ṃ.1 are predicted, in rough agreement with observations presented by Maeder.


1970 ◽  
Vol 38 ◽  
pp. 232-235
Author(s):  
W. Becker ◽  
R. Fenkart

The Basel Observatory program of the determination of disc- and halo-density gradients for different intervals of absolute magnitude comprises in addition to Milky Way fields several directions, all pointing to Selected Areas near a plane perpendicular to the galactic equator and passing through the sun and the galactic centre. It was started with SA 51 (Becker, 1965) and continued with Sa 57, 54 and 141 (Fenkart, 1967, 1968, 1969).


1959 ◽  
Vol 10 ◽  
pp. 39-40
Author(s):  
O. C. Wilson

Modern photoelectric techniques yield magnitudes and colors of stars with accuracies of the order of a few thousandths and a few hundredths of a magnitude respectively. Hence for star clusters it is possible to derive highly accurate color-magnitude arrays since all of the members of a cluster may be considered to be at the same distance from the observer. It is much more difficult to do this for the nearby stars where all of the objects concerned are at different, and often poorly determined, distances. If one depends upon trigonometric parallaxes, the bulk of the reliable individual values will refer to main sequence stars, and while the mean luminosities of brighter stars are given reasonably well by this method, the scatter introduced into a color-magnitude array by using individual trigonometrically determined luminosities could obscure important features. Somewhat similar objections could be raised against the use of the usual spectroscopic parallaxes which also should be quite good for the main sequence but undoubtedly exhibit appreciable scatter for some, at least, of the brighter stars.


1980 ◽  
Vol 51 ◽  
pp. 296-297
Author(s):  
G. Belvedere ◽  
L. Paterno ◽  
M. Stix

AbstractWe extend to the lower main sequence stars the analysis of convection interacting with rotation in a compressible spherical shell, already applied to the solar case (Belvedere and Paterno, 1977; Belvedere et al. 1979a). We assume that the coupling constant ε between convection and rotation, does not depend on the spectral type. Therefore we take ε determined from the observed differential rotation of the Sun, and compute differential rotation and magnetic cycles for stars ranging from F5 to MO, namely for those stars which are supposed to possess surface convection zones (Belvedere et al. 1979b, c, d). The results show that the strength of differential rotation decreases from a maximum at F5 down to a minimum at G5 and then increases towards later spectral types. The computations of the magnetic cycles based on the αω-dynamo theory show that dynamo instability decreases from F5 to G5, and then increases towards the later spectral types reaching a maximum at MO. The period of the magnetic cycles increases from a few years at F5 to about 100 years at MO. Also the extension of the surface magnetic activity increases substantially towards the later spectral types. The results are discussed in the framework of Wilson’s (1978) observations.


1973 ◽  
Vol 50 ◽  
pp. 52-59
Author(s):  
W. Gliese

By examining the observed dispersion in (colour, spectral type) relations, classification errors have been derived from the data of nearby stars. The comparisons of the colour deviations observed in spectral regions of large variations of colour with type with the deviations in regions of small variations give the following standard errors in units of a tenth of a spectral class: For K dwarfs ±0.6 (MK), ±1.2 (Mt. Wilson), ±0.7 (Kuiper); for early M dwarfs ±0.9: (MK), ±0.7 (Mt. Wilson), ±0.5: (Kuiper); and for late M dwarfs ±0.7 (Kuiper).


1996 ◽  
Vol 158 ◽  
pp. 335-338
Author(s):  
Joanna Mikołajewska

AbstractWe have combined IUE spectra with optical spectroscopic and photometric data collected over a few orbits of the symbiotic binary CI Cyg to follow the evolution of a disk and boundary layer during a full activity cycle. Our results indicate an extended optically thin disk during quiescent periods, which evolves into an optically thick state in an eruption; a classical boundary layer at the inner edge of the disk ionizes a surrounding H II region in quiescence, and this emission fades during the rise to visual maximum in outburst. This evolution of Ṁ rivals that observed in classical CVs and pre-main sequence stars, so symbiotic systems like CI Cyg represent another opportunity to study the physics of disk accretion.


1996 ◽  
Vol 169 ◽  
pp. 431-432 ◽  
Author(s):  
B. Fuchs ◽  
C. Dettbarn ◽  
R. Wielen

It is well known that the velocity dispersions of the stars in the solar neighbourhood increase with their ages (Wielen 1977). In Fig.1 we show |W| weighted velocity dispersions (cf. Wielen 1977) of the stars in the Third Catalog of Nearby Stars (Gliese and Jahreiß 1994). Open symbols indicate main sequence stars and crosses indicate McCormick stars, a kinematically unbiased subset of the CNS3, respectively, whereas the filled symbols are the Edvardsson et al. (1993) data. Stars older than 14 Gyr are not shown because they are probably thick disk stars (Freeman 1991). We have assumed a maximum age of the old thin disk stars of 12 Gyr as suggested by the Edvardsson et al. data. As can be seen from Fig.1 both data sets fit ideally together. The solid line indicates a σ ∝ τ1/2 law.


1980 ◽  
Vol 5 ◽  
pp. 835-837
Author(s):  
Leonard V. Kuhi ◽  
Stuart Vogel

Kraft (1970) obtained the rotational velocities for large numbers of stars located in the field and in clusters of different ages. He noted that (a) among the field stars those stars with strong Call K emission had larger rotational velocities than those without; (b) stars in the Hyades and Pleiades (which are much younger than the field) had both larger rotational velocities and stronger Call K emission than field stars; (c) there was a pronounced break at spectral type early F in v sini as a function of spectral type and (d) the distribution of angular momentum per unit, mass J(M⊚) was proportional to M0.57 for main sequence stars with mass M > 1.5 Mʘ. This distribution predicted a v sini of ˜75 km/sec for stars of lower mass (e.g. G type) but such high velocities were not seen in the Pleiades nor in the sun. This implied a more rapid deceleration of v sini for lower mass stars and led to estimates of the e-folding time of ˜4×l08 years for stars of 1.2 M⊚ to reduce their v sini from that of the Pleiades to that of the Hyades and ˜4×l09 years to go from the Hyades to the sun’s v sini. We note also that the age of the Pleiades is approximately equal to the pre-main sequence lifetime of a 1.0 M0 star so that the zero-age main sequence cannot have J(M) α M0.57 for ˜1 M0 stars. Skumanich (1972) showed that both the Call k emission and the rotational velocity decayed as the (age)-½ for main-sequence stars.


Sign in / Sign up

Export Citation Format

Share Document