scholarly journals The atomic hydrogen/molecular cloud association: an unavoidable relationship

1991 ◽  
Vol 147 ◽  
pp. 37-40
Author(s):  
G. Joncas

The presence of HI in the interstellar medium is ubiquitous. HI is the principal actor in the majority of the physical processes at work in our Galaxy. Restricting ourselves to the topics of this symposium, atomic hydrogen is involved with the formation of molecular clouds and is one of the byproducts of their destruction by young stars. HI has different roles during a molecular cloud's life. I will discuss here a case of coexisting HI and H2 at large scale and the origin of HI in star forming regions. For completeness' sake, it should be mentionned that there are at least three other aspects of HI involvement: HI envelopes around molecular clouds, the impact of SNRs (see work on IC 443), and the role of HI in quiescent dark clouds (see van der Werf's work).

1991 ◽  
Vol 147 ◽  
pp. 37-40
Author(s):  
G. Joncas

The presence of HI in the interstellar medium is ubiquitous. HI is the principal actor in the majority of the physical processes at work in our Galaxy. Restricting ourselves to the topics of this symposium, atomic hydrogen is involved with the formation of molecular clouds and is one of the byproducts of their destruction by young stars. HI has different roles during a molecular cloud's life. I will discuss here a case of coexisting HI and H2 at large scale and the origin of HI in star forming regions. For completeness' sake, it should be mentionned that there are at least three other aspects of HI involvement: HI envelopes around molecular clouds, the impact of SNRs (see work on IC 443), and the role of HI in quiescent dark clouds (see van der Werf's work).


2015 ◽  
Vol 10 (S314) ◽  
pp. 8-15
Author(s):  
Charles J. Lada

AbstractStudies of molecular clouds and young stars near the sun have provided invaluable insights into the process of star formation. Indeed, much of our physical understanding of this topic has been derived from such studies. Perhaps the two most fundamental problems confronting star formation research today are: 1) determining the origin of stellar mass and 2) deciphering the nature of the physical processes that control the star formation rate in molecular gas. As I will briefly outline here, observations and studies of local star forming regions are making particularly significant contributions toward the solution of both these important problems.


2006 ◽  
Vol 2 (S237) ◽  
pp. 406-406 ◽  
Author(s):  
Joanne Dawson ◽  
A. Kawamura ◽  
N. Mizuno ◽  
T. Onishi ◽  
Y. Fukui

AbstractTheory predicts the triggered formation of molecular clouds stars through the fragmentation and collapse of swept-up ambient gas. Yet the majority of Galactic HI shells show no more than a scattering of small molecular clouds. The Carina Flare supershell (Fukui et al. 1999) is a rare example of an HI shell with a striking molecular component. Here we present the large-scale morphology of the molecular and atomic gas and the location of YSO candidates. A detailed look at two molecular clumps in the shell walls reveals active, intermediate mass star forming regions at various stages of early evolution.


2020 ◽  
Vol 638 ◽  
pp. A7 ◽  
Author(s):  
A. Zavagno ◽  
Ph. André ◽  
F. Schuller ◽  
N. Peretto ◽  
Y. Shimajiri ◽  
...  

Context. Massive stars and their associated ionized (H II) regions could play a key role in the formation and evolution of filaments that host star formation. However, the properties of filaments that interact with H II regions are still poorly known. Aims. To investigate the impact of H II regions on the formation of filaments, we imaged the Galactic H II region RCW 120 and its surroundings where active star formation takes place and where the role of ionization feedback on the star formation process has already been studied. Methods. We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 and 450 μm with Herschel-SPIRE/HOBYS data at 350 and 500 μm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the dense gas distribution around RCW 120 with a resolution of 8′′ or 0.05 pc at a distance of 1.34 kpc. Results. Our study allows us to trace the median radial intensity profile of the dense shell of RCW 120. This profile is asymmetric, indicating a clear compression from the H II region on the inner part of the shell. The profile is observed to be similarly asymmetric on both lateral sides of the shell, indicating a homogeneous compression over the surface. On the contrary, the profile analysis of a radial filament associated with the shell, but located outside of it, reveals a symmetric profile, suggesting that the compression from the ionized region is limited to the dense shell. The mean intensity profile of the internal part of the shell is well fitted by a Plummer-like profile with a deconvolved Gaussian full width at half maximum of 0.09 pc, as observed for filaments in low-mass star-forming regions. Conclusions. Using ArTéMiS data combined with Herschel-SPIRE data, we found evidence for compression from the inner part of the RCW 120 ionized region on the surrounding dense shell. This compression is accompanied with a significant (factor 5) increase of the local column density. This study suggests that compression exerted by H II regions may play a key role in the formation of filaments and may further act on their hosted star formation. ArTéMiS data also suggest that RCW 120 might be a 3D ring, rather than a spherical structure.


1987 ◽  
Vol 115 ◽  
pp. 161-163 ◽  
Author(s):  
J. B. Whiteoak ◽  
F. F. Gardner ◽  
J. R. Forster ◽  
P. Palmer ◽  
V. Pankonin

H2CO and OH masers in the H II-region/molecular-cloud complex Sgr B2 have been observed with the VLA and combined with other observations of OH and H2O masers. It is found that groups of the masers and compact continuum components are located along a north-south line extending across the complex. The overall alignment suggests that star formation is being triggered by a single large-scale event such as an interaction between molecular clouds.


1996 ◽  
Vol 13 (3) ◽  
pp. 268-271
Author(s):  
Peter W. J. L. Brand

AbstractA one-day workshop discussed the properties of shocks in star-forming regions. It also reviewed other physical processes in star-forming molecular gas, and the progress in numerical modelling of such physics. Discussion concentrated on the complexity which instabilities in the gas flow bring to the analysis of shocks. The consensus was that progress will be made as the spatial/spectral resolution of shock measurements improves, and as numerical modelling of the nonlinear growth of instabilities becomes possible, potentially leading to statistical models of shock dynamics.


2019 ◽  
Vol 490 (4) ◽  
pp. 4489-4501 ◽  
Author(s):  
G Sabatini ◽  
A Giannetti ◽  
S Bovino ◽  
J Brand ◽  
S Leurini ◽  
...  

ABSTRACT An estimate of the degree of CO-depletion (fD) provides information on the physical conditions occurring in the innermost and densest regions of molecular clouds. A key parameter in these studies is the size of the depletion radius, i.e. the radius within which the C-bearing species, and in particular CO, are largely frozen on to dust grains. A strong depletion state (i.e. fD > 10, as assumed in our models) is highly favoured in the innermost regions of dark clouds, where the temperature is <20 K and the number density of molecular hydrogen exceeds a few × 104 cm−3. In this work, we estimate the size of the depleted region by studying the Infrared Dark Cloud (IRDC) G351.77−0.51. Continuum observations performed with the Herschel Space Observatory and the LArge APEX BOlometer CAmera, together with APEX C18O and C17O J = 2→1 line observations, allowed us to recover the large-scale beam- and line-of-sight-averaged depletion map of the cloud. We built a simple model to investigate the depletion in the inner regions of the clumps in the filament and the filament itself. The model suggests that the depletion radius ranges from 0.02 to 0.15 pc, comparable with the typical filament width (i.e. ∼0.1 pc). At these radii, the number density of H2 reaches values between 0.2 and 5.5 × 105 cm−3. These results provide information on the approximate spatial scales on which different chemical processes operate in high-mass star-forming regions and also suggest caution when using CO for kinematical studies in IRDCs.


2006 ◽  
Vol 2 (S237) ◽  
pp. 452-452
Author(s):  
S. Nammahachak ◽  
K. Asanok ◽  
B. Hutawarakorn Kramer ◽  
R. J. Cohen ◽  
O. Muanwong ◽  
...  

AbstractOH masers are sensitive probes of the kinematics and physical conditions, and give unique information on the magnetic field through their polarization. Zeeman splitting of the OH lines can give the magnetic field strength and direction. Observing OH masers with MERLIN we studied the bipolar outflow in the star-forming region ON1, which hosts one of the earliest known ultra-compact (UC) HII regions. The strongest masers lie near the southern edge of the UCHII region in an elongated distribution. The maser distribution is orthogonal to the bipolar outflow seen in HCO+, suggesting that the OH masers may be embedded in a molecular disk or torus around a young B0.3 star, most likely tracing a shock front. An isolated group of 1720-MHz masers is also seen to the East. The magnetic field deduced from Zeeman splitting of the OH maser lines shows a large-scale order, with field values ranging from -0.4 to -4.6 mG. These results add to the growing body of evidence for OH masers associated with molecular disks or tori at the centre of bipolar outflow from massive young stars, and for a significant role played by the magnetic field in generating or channeling the bipolar outflow. Further details are presented by Nammahachak et al. 2006.


2020 ◽  
Vol 641 ◽  
pp. A36 ◽  
Author(s):  
Odysseas Dionatos ◽  
Lars. E. Kristensen ◽  
Mario Tafalla ◽  
Manuel Güdel ◽  
Magnus Persson

Context. Far infrared cooling of excited gas around protostars has been predominantly studied in the context of pointed observations. Large-scale spectral maps of star forming regions enable the simultaneous, comparative study of the gas excitation around an ensemble of sources at a common frame of reference, therefore, providing direct insights in the multitude of physical processes involved. Aims. We employ extended spectral-line maps to decipher the excitation, the kinematical, and dynamical processes in NGC 1333 as revealed by a number of different molecular and atomic lines, aiming to set a reference for the applicability and limitations of different tracers in constraining particular physical processes. Methods. We reconstructed line maps for H2, CO, H2O, and [C I] using data obtained with the Spitzer infrared spectrograph and the Herschel HIFI and SPIRE instruments. We compared the morphological features revealed in the maps and derive the gas excitation conditions for regions of interest employing local thermodynamic equilibrium (LTE) and non-LTE methods. We also calculated the kinematical and dynamical properties for each outflow tracer in a consistent manner for all observed outflows driven by protostars in NGC 1333. We finally measured the water abundance in outflows with respect to carbon monoxide and molecular hydrogen. Results. CO and H2 are highly excited around B-stars and, at lower, levels trace protostellar outflows. H2O emission is dominated by a moderately fast component associated with outflows. H2O also displays a weak, narrow-line component in the vicinity of B-stars associated to their ultraviolet (UV) field. This narrow component is also present in a few of outflows, indicating UV radiation generated in shocks. Intermediate J CO lines appear brightest at the locations traced by the narrow H2O component, indicating that beyond the dominating collisional processes, a secondary, radiative excitation component can also be active. The morphology, kinematics, excitation, and abundance variations of water are consistent with its excitation and partial dissociation in shocks. Water abundance ranges between 5 × 10−7 and ~10−5, with the lower values being more representative. Water is brightest and most abundant around IRAS 4A, which is consistent with the latter hosting a hot corino source. [C I] traces dense and warm gas in the envelopes surrounding protostars. Outflow mass flux is highest for CO and decreases by one and two orders of magnitude for H2 and H2O, respectively. Conclusions. Large-scale spectral line maps can provide unique insights into the excitation of gas in star-forming regions. A comparative analysis of line excitation and morphologies at different locations allows us to decipher the dominant excitation conditions in each region in addition to isolating exceptional cases.


2020 ◽  
Vol 643 ◽  
pp. A148
Author(s):  
P. A. B. Galli ◽  
H. Bouy ◽  
J. Olivares ◽  
N. Miret-Roig ◽  
R. G. Vieira ◽  
...  

Context. Lupus is recognised as one of the closest star-forming regions, but the lack of trigonometric parallaxes in the pre-Gaia era hampered many studies on the kinematic properties of this region and led to incomplete censuses of its stellar population. Aims. We use the second data release of the Gaia space mission combined with published ancillary radial velocity data to revise the census of stars and investigate the 6D structure of the Lupus complex. Methods. We performed a new membership analysis of the Lupus association based on astrometric and photometric data over a field of 160 deg2 around the main molecular clouds of the complex and compared the properties of the various subgroups in this region. Results. We identified 137 high-probability members of the Lupus association of young stars, including 47 stars that had never been reported as members before. Many of the historically known stars associated with the Lupus region identified in previous studies are more likely to be field stars or members of the adjacent Scorpius-Centaurus association. Our new sample of members covers the magnitude and mass range from G ≃ 8 to G ≃ 18 mag and from 0.03 to 2.4 M⊙, respectively. We compared the kinematic properties of the stars projected towards the molecular clouds Lupus 1–6 and showed that these subgroups are located at roughly the same distance (about 160 pc) and move with the same spatial velocity. Our age estimates inferred from stellar models show that the Lupus subgroups are coeval (with median ages ranging from about 1 to 3 Myr). The Lupus association appears to be younger than the population of young stars in the Corona-Australis star-forming region recently investigated by our team using a similar methodology. The initial mass function of the Lupus association inferred from the distribution of spectral types shows little variation compared to other star-forming regions. Conclusions. In this paper, we provide an updated sample of cluster members based on Gaia data and construct the most complete picture of the 3D structure and 3D space motion of the Lupus complex.


Sign in / Sign up

Export Citation Format

Share Document