The measurement of taxonomic evolution: preservational consequences

Paleobiology ◽  
1978 ◽  
Vol 4 (2) ◽  
pp. 135-149 ◽  
Author(s):  
Howard R. Lasker

The accuracy of numerical summaries of data from the fossil record has been hotly contested in recent years. In this paper I present a computer simulation which mimics the process of preservation and the resultant loss of data in survivorship records. The simulation accepts as its input data a hypothetical “original” record and a time dependent model of preservational loss. These parameters are used to generate a “preserved” record, and the “original” and “preserved” data sets are then compared. Eleven hypothetical original records having different patterns of diversity and turnover were “preserved” in this manner. Indices of diversity, origination, extinction, turnover, and longevity were evaluated for each of five different models of preservational bias. All of the indices behaved in a single characteristic fashion. Taxonomic data that contained large fluctuations (of the order 100%) were preserved accurately. Similarly the large scale changes in preserved records matched original distributions. Records with small fluctuations (30%) were variably preserved and when such fluctuations were present in the preserved record they did not always correlate with events in the original record. Longevities were more accurately preserved than were other forms of taxonomic data. The results are believed to reflect the levels of accuracy obtainable from generic and familial data and suggest ways in which data sets warranting more detailed study may be singled out.

1993 ◽  
Vol 50 (1) ◽  
pp. 51-70 ◽  
Author(s):  
D. Zoler ◽  
S. Cuperman ◽  
J. Ashkenazy ◽  
M. Caner ◽  
Z. Kaplan

A time-dependent quasi-one-dimensional model is developed for studying high- pressure discharges in ablative capillaries used, for example, as plasma sources in electrothermal launchers. The main features of the model are (i) consideration of ablation effects in each of the continuity, momentum and energy equations; (ii) use of a non-ideal equation of state; and (iii) consideration of space- and time-dependent ionization.


2004 ◽  
Vol 19 (32) ◽  
pp. 5651-5661 ◽  
Author(s):  
C. MARTÍNEZ-PRIETO ◽  
O. OBREGÓN ◽  
J. SOCORRO

Using the ontological interpretation of quantum mechanics in a particular sense, we obtain the classical behavior of the scale factor and two scalar fields, derived from a string effective action for the Friedmann–Robertson–Walker (FRW) time dependent model. Besides, the Wheeler–DeWitt equation is solved exactly. We speculate that the same procedure could also be applied to S-branes.


2011 ◽  
Vol 53 (3) ◽  
pp. 846-849 ◽  
Author(s):  
Gregory B. Tait ◽  
Robert E. Richardson ◽  
Michael B. Slocum ◽  
Michael O. Hatfield

1990 ◽  
Vol 5 ◽  
pp. 262-272
Author(s):  
William Miller

Paleontologists have lavished much time and energy on description and explanation of large-scale patterns in the fossil record (e.g., mass extinctions, histories of monophyletic taxa, deployment of major biogeographic units), while paying comparatively little attention to biologic patterns preserved only in local stratigraphic sequences. Interpretation of the large-scale patterns will always be seen as the chief justification for the science of paleontology, but solving problems framed by long time spans and large areas is rife with tenuous inference and patterns are prone to varied interpretation by different investigators using virtually the same data sets (as in the controversy over ultimate cause of the terminal Cretaceous extinctions). In other words, the large-scale patterns in the history of life are the true philosophical property of paleontology, but there will always be serious problems in attempting to resolve processes that transpired over millions to hundreds-of-millions of years and encompassed vast areas of seafloor or landscape. By contrast, less spectacular and more commonplace changes in local habitats (often related to larger-scale events and cycles) and attendant biologic responses are closer to our direct experience of the living world and should be easier to interpret unequivocally. These small-scale responses are reflected in the fossil record at the scale of local outcrops.


Sign in / Sign up

Export Citation Format

Share Document