Sensorimotor EEG rhythms and their connection to local/global neocortical dynamic theory

2000 ◽  
Vol 23 (3) ◽  
pp. 399-400 ◽  
Author(s):  
Colin Andrew

The EEG activity recorded from the human sensorimotor cortical area exhibits rhythmic activity covering a broad range of frequencies, including alpha, mu, beta, and gamma (40-Hz) rhythms. This commentary elaborates on connections between these sensorimotor rhythms and Nunez's neocortical dynamic theory.

1996 ◽  
Author(s):  
B. Hatfield ◽  
D. Santa Maria ◽  
T. Spalding ◽  
C. Blanchard ◽  
A. Haufler ◽  
...  

2015 ◽  
Vol 113 (9) ◽  
pp. 3256-3267 ◽  
Author(s):  
Michel J. A. M. van Putten ◽  
Marleen C. Tjepkema-Cloostermans ◽  
Jeannette Hofmeijer

Infraslow activity represents an important component of physiological and pathological brain function. We study infraslow activity (<0.1 Hz) in 41 patients with postanoxic coma after cardiac arrest, including the relationship between infraslow activity and EEG power in the 3–30 Hz range, using continuous full-band scalp EEG. In all patients, infraslow activity (0.015–0.06 Hz) was present, irrespective of neurological outcome or EEG activity in the conventional frequency bands. In two patients, low-amplitude (10–30 μV) infraslow activity was present while the EEG showed no rhythmic activity above 0.5 Hz. In 13/15 patients with a good outcome and 20/26 patients with a poor one, EEG power in the 3–30 Hz frequency range was correlated with the phase of infraslow activity, quantified by the modulation index. In 9/14 patients with burst-suppression with identical bursts, bursts appeared in clusters, phase-locked to the infraslow oscillations. This is substantiated by a simulation of burst-suppression in a minimal computational model. Infraslow activity is preserved in postanoxic encephalopathy and modulates cortical excitability. The strongest modulation is observed in patients with severe postanoxic encephalopathy and burst-suppression with identical bursts.


1992 ◽  
Vol 67 (4) ◽  
pp. 981-995 ◽  
Author(s):  
M. Wilson ◽  
J. M. Bower

1. A large-scale computer model of the piriform cortex was constructed on the basis of the known anatomic and physiological organization of this region. 2. The oscillatory field potential and electroencephalographic (EEG) activity generated by the model was compared with actual physiological results. The model was able to produce patterns of activity similar to those recorded physiologically in response to both weak and strong electrical shocks to the afferent input. The model also generated activity patterns similar to EEGs recorded in behaving animals. 3. In addition to replicating known physiological responses, it has been possible to use the simulations to explore the interactions of network components that might underlie these responses. This analysis suggests that the physiological properties of the cortex are dependent on the complex interaction of both network and cellular properties. In particular, we have found that the relationship between conduction velocities in intrinsic cortical fiber systems and the time constants of excitatory and inhibitory effects are critical for replicating physiological results. 4. Analysis of the model also suggests a correspondence between the 40-Hz oscillatory patterns of activity induced by low levels of odor-like stimulation and oscillatory patterns seen in lightly anesthetized cortex in response to weak electrical shocks to the afferent fiber system. 5. The specific relationships we have found between the different components of the model also support several speculations on their functional significance. The simulations suggest that during each 40-Hz cycle of EEG activity there is a convergence in rostral cortex of afferent information from the olfactory bulb and recurrent association fiber information from caudal cortex. This convergence could underlie an iterative process central to the recognition of complex olfactory stimuli.


1971 ◽  
Vol 46 (2) ◽  
pp. 343 ◽  
Author(s):  
Barbara P. Uzzell ◽  
Daniel E. Sheer

2016 ◽  
Vol 1 (1) ◽  
pp. 46-51
Author(s):  
VF F Pyatin ◽  
AV V Kolsanov ◽  
MS S Segreeva ◽  
ES S Korovina ◽  
AV V Zakharov

Aim - the determination of common and individual characteristics in patterns of sensorimotor rhythms of EEG during motor imagery in upper and lower limbs. Materials and methods. 20 right-handed students of Samara State Medical University at the age of 18-20 years took part in the investigation, signing informed consent. Monopolar EEG was recorded with the use of 128-channel EEG recording system (BP-010302 BrainАmpStandart 128) at rest and during the imagining of monovector movements in 4 limbs (bending fingers of the right hand, bending fingers of the left hand, dorsiflexion of the right foot, dorsiflexion of the left foot); and during the imagining of triple-vector movements in the dominant hand (fingers bending, elbow flexion, wrist rotation). The following programs and methods were used during the processing of EEG: MatLab, IBM SPSS Statistics 22, ICA (independent component analysis), CSP (Common Spatial Pattern), LORETA. Results. It was found out that alpha2- and beta2- EEG frequency bands are highly significant for the formation of contralateral activation focus during motor imagery in the 4 limbs. ERD / ERS of the EEG rhythms were more pronounced during imagining movements in the dominant limbs (right hand, right leg) than in non-dominant.We found individuality of responses of sensorimotor EEG rhythms in addition to the general trends of EEG changes during imagination of one-type movement in the 4 limbs. The significance of changes in the power of EEG sensorimotor rhythms for differentiating 3 degrees of freedom during motor imagery in one limb was not found. Conclusion. Event-related desynchronization/synchro-nization(ERD/ERS) of sensorimotor EEG rhythms related to motor imagery has individual characteristics and their classification will lead to the significant increase of the number of degrees of freedom in creation and implementation of BCI.


Sign in / Sign up

Export Citation Format

Share Document