scholarly journals Rigidity of lattices of non-positive curvature

1983 ◽  
Vol 3 (1) ◽  
pp. 47-85 ◽  
Author(s):  
P. Eberlein

AbstractLet M, M* denote compact, connected manifolds of non-positive sectional curvature whose fundamental groups are isomorphic and whose Euclidean de Rham factors are trivial. We prove that: if M is a compact irreducible quotient of a reducible symmetric space H, then M and M* are isometric up to a constant multiple of the metric; and that the number and dimensions of the local de Rham factors are the same for M and M*. Gromov has independently proved the first result in the more general case that M is locally symmetric and globally irreducible with rank at least two.

2018 ◽  
Vol 2020 (5) ◽  
pp. 1346-1365 ◽  
Author(s):  
Jason DeVito ◽  
Ezra Nance

Abstract A Riemannian manifold is said to be almost positively curved if the set of points for which all two-planes have positive sectional curvature is open and dense. We show that the Grassmannian of oriented two-planes in $\mathbb{R}^{7}$ admits a metric of almost positive curvature, giving the first example of an almost positively curved metric on an irreducible compact symmetric space of rank greater than 1. The construction and verification rely on the Lie group $\mathbf{G}_{2}$ and the octonions, so do not obviously generalize to any other Grassmannians.


1996 ◽  
Vol 54 (3) ◽  
pp. 483-487 ◽  
Author(s):  
Yi-Hu Yang

Milnor's classic result that the fundamental group of a compact Riemannian manifold of negative sectional curvature has exponential growth is generalised to the case of negative Ricci curvature and non-positive sectional curvature.


2019 ◽  
Vol 22 (06) ◽  
pp. 1950053 ◽  
Author(s):  
Manuel Amann ◽  
Lee Kennard

Extending existing work in small dimensions, Dessai computed the Euler characteristic, signature, and elliptic genus for [Formula: see text]-manifolds of positive sectional curvature in the presence of torus symmetry. He also computes the diffeomorphism type by restricting his results to classes of manifolds known to admit non-negative curvature, such as biquotients. The first part of this paper extends Dessai’s calculations to even dimensions up to [Formula: see text]. In particular, we obtain a first characterization of the Cayley plane in such a setting. The second part studies a closely related family of manifolds called positively elliptic manifolds, and we prove a conjecture of Halperin in this context for dimensions up to [Formula: see text] or Euler characteristics up to [Formula: see text].


2018 ◽  
Vol 40 (5) ◽  
pp. 1194-1216
Author(s):  
CHRIS CONNELL ◽  
THANG NGUYEN ◽  
RALF SPATZIER

A Riemannian manifold $M$ has higher hyperbolic rank if every geodesic has a perpendicular Jacobi field making sectional curvature $-1$ with the geodesic. If, in addition, the sectional curvatures of $M$ lie in the interval $[-1,-\frac{1}{4}]$ and $M$ is closed, we show that $M$ is a locally symmetric space of rank one. This partially extends work by Constantine using completely different methods. It is also a partial counterpart to Hamenstädt’s hyperbolic rank rigidity result for sectional curvatures $\leq -1$, and complements well-known results on Euclidean and spherical rank rigidity.


2002 ◽  
Vol 74 (4) ◽  
pp. 589-597 ◽  
Author(s):  
FUQUAN FANG

Let M be a simply connected compact 6-manifold of positive sectional curvature. If the identity component of the isometry group contains a simple Lie subgroup, we prove that M is diffeomorphic to one of the five manifolds listed in Theorem A.


2014 ◽  
Vol 150 (12) ◽  
pp. 2143-2183 ◽  
Author(s):  
Matthew Strom Borman ◽  
Mark McLean

AbstractThe width of a Lagrangian is the largest capacity of a ball that can be symplectically embedded into the ambient manifold such that the ball intersects the Lagrangian exactly along the real part of the ball. Due to Dimitroglou Rizell, finite width is an obstruction to a Lagrangian admitting an exact Lagrangian cap in the sense of Eliashberg–Murphy. In this paper we introduce a new method for bounding the width of a Lagrangian$Q$by considering the Lagrangian Floer cohomology of an auxiliary Lagrangian$L$with respect to a Hamiltonian whose chords correspond to geodesic paths in$Q$. This is formalized as a wrapped version of the Floer–Hofer–Wysocki capacity and we establish an associated energy–capacity inequality with the help of a closed–open map. For any orientable Lagrangian$Q$admitting a metric of non-positive sectional curvature in a Liouville manifold, we show the width of$Q$is bounded above by four times its displacement energy.


Sign in / Sign up

Export Citation Format

Share Document