scholarly journals Real analytic actions of SL (2, ℝ) on a surface

1983 ◽  
Vol 3 (3) ◽  
pp. 447-499 ◽  
Author(s):  
Dennis C. Stowe

AbstractReal analytic actions of connected Lie groups locally isomorphic to SL (2, ℝ) on compact surfaces, possibly with boundary, are classified up to topological conjugacy and up to real analytic conjugacy. Finite dimensional universal unfoldings of the real analytic conjugacy relation are also constructed. These are local transversals to the conjugacy classes in the space of actions. Sometimes the unfolding is a variety but not a manifold, and thus the space of actions is not naturally modelled on a vector space. We find many rigid actions and some unexpected bifurcation.

1992 ◽  
Vol 35 (3) ◽  
pp. 400-409 ◽  
Author(s):  
Frieder Knüppel

AbstractThe u-invariant u(K) of a field K is the smallest number such that every k-dimensional regular quadratic form over K is universal. Let O(V,f) be the orthogonal group of a finite-dimensional regular metric vector space over a field K of characteristic distinct from 2. Let π ∊ 0(V), B(π) := V(π - 1), dim[B(π) ∩ kernel(π - 1)] > u(K). Given λ1,..., λm ∊ K* where m := dim B(π) - u(K) + 1. Then π = σ1······σk where k := dim B(π) and σi is a symmetry with negative space Kai and f(ai, ai) = λi for i ∊ { 1 , . . . , m}. We prove similar theorems also for symplectic groups where transvections are taken as generators.


2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


1971 ◽  
Vol 23 (1) ◽  
pp. 12-21
Author(s):  
J. Malzan

If ρ(G) is a finite, real, orthogonal group of matrices acting on the real vector space V, then there is defined [5], by the action of ρ(G), a convex subset of the unit sphere in V called a fundamental region. When the unit sphere is covered by the images under ρ(G) of a fundamental region, we obtain a semi-regular figure.The group-theoretical problem in this kind of geometry is to find when the fundamental region is unique. In this paper we examine the subgroups, ρ(H), of ρ(G) with a view of finding what subspace, W of V consists of vectors held fixed by all the matrices of ρ(H). Any such subspace lies between two copies of a fundamental region and so contributes to a boundary of both. If enough of these boundaries might be found, the fundamental region would be completely described.


2003 ◽  
Vol 87 (03) ◽  
pp. 647-676 ◽  
Author(s):  
Karl H. Hofmann ◽  
Sidney A. Morris

2016 ◽  
Vol 101 (2) ◽  
pp. 277-287
Author(s):  
AARON TIKUISIS

It is shown that, for any field $\mathbb{F}\subseteq \mathbb{R}$, any ordered vector space structure of $\mathbb{F}^{n}$ with Riesz interpolation is given by an inductive limit of a sequence with finite stages $(\mathbb{F}^{n},\mathbb{F}_{\geq 0}^{n})$ (where $n$ does not change). This relates to a conjecture of Effros and Shen, since disproven, which is given by the same statement, except with $\mathbb{F}$ replaced by the integers, $\mathbb{Z}$. Indeed, it shows that although Effros and Shen’s conjecture is false, it is true after tensoring with $\mathbb{Q}$.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


2019 ◽  
Vol 27 (1) ◽  
pp. 47-60
Author(s):  
Roland Coghetto

Summary Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]). It is also equivalent to the notion of “Mesure algèbrique”1, to the opposite of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9]. In the second part, we introduce the classic notion of “cross-ratio” of 4 points aligned in a real vector space. Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion3 [9]: The cross-ratio of a quadruple of distinct points on the real line with coordinates x1, x2, x3, x4 is given by: $$({x_1},{x_2};{x_3},{x_4}) = {{{x_3} - {x_1}} \over {{x_3} - {x_2}}}.{{{x_4} - {x_2}} \over {{x_4} - {x_1}}}$$ In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leonczuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4]. Nakasho and Shidama have developed a solution to explore the notions introduced by different authors4 [7]. The definitions can be directly linked in the HTMLized version of the Mizar library5. The study of the cross-ratio will continue within the framework of the Klein- Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].


Sign in / Sign up

Export Citation Format

Share Document