scholarly journals The attracting centre of a continuous self-map of the interval

1988 ◽  
Vol 8 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Xiong Jincheng

AbstractLet ƒ denote a continuous map of a compact interval I to itself. A point x ∈ I is called a γ-limit point of ƒ if it is both an ω-limit point and an α-limit point of some point y ∈ I. Let Γ denote the set of γ-limit points. In the present paper, we show that (1) −Γ is either empty or countably infinite, where denotes the closure of the set P of periodic points, (2) x ∈ I is a γ-limit point if and only if there exist y1 and y2 in I such that x is an ω-limit point of y1, and y1 is an ω-limit point of y2, and if and only if there exists a sequence y1, y2,…of points in I such that x is an ω-limit point of y1, and yi is an ω-limit point of yi+1 for every i ≥ 1, and (3) the period of each periodic point of ƒ is a power of 2 if and only if every γ-limit point is recurrent.

1986 ◽  
Vol 6 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Louis Block ◽  
Ethan M. Coven

AbstractLet f denote a continuous map of a compact interval to itself, P(f) the set of periodic points of f and Λ(f) the set of ω-limit points of f. Sarkovskǐi has shown that Λ(f) is closed, and hence ⊆Λ(f), and Nitecki has shown that if f is piecewise monotone, then Λ(f)=. We prove that if x∈Λ(f)−, then the set of ω-limit points of x is an infinite minimal set. This result provides the inspiration for the construction of a map f for which Λ(f)≠.


Author(s):  
Seung Wha Yeom ◽  
Kyung Jin Min ◽  
Seong Hoon Cho

Letfbe a continuous map of the circleS1into itself. And letR(f),Λ(f),Γ(f), andΩ(f)denote the set of recurrent points,ω-limit points,γ-limit points, and nonwandering points off, respectively. In this paper, we show that each point ofΩ(f)\R(f)¯is one-side isolated, and prove that(1)Ω(f)\Γ(f)is countable and(2)Λ(f)\Γ(f)andR(f)¯\Γ(f)are either empty or countably infinite.


2020 ◽  
Vol 21 (2) ◽  
pp. 285
Author(s):  
Taixiang Sun ◽  
Lue Li ◽  
Guangwang Su ◽  
Caihong Han ◽  
Guoen Xia

<p>Let I be a fuzzy metric interval and f be a continuous map from I to I. Denote by R(f), Ω(f) and ω(x, f) the set of recurrent points of f, the set of non-wandering points of f and the set of ω- limit points of x under f, respectively. Write ω(f) = ∪x∈Iω(x, f), ωn+1(f) = ∪x∈ωn(f)ω(x, f) and Ωn+1(f) = Ω(f|Ωn(f)) for any positive integer n. In this paper, we show that Ω2(f) = R(f) and the depth of f is at most 2, and ω3(f) = ω2(f) and the depth of the attracting centre of f is at most 2.</p>


2010 ◽  
Vol 34 (3-4) ◽  
pp. 309-332
Author(s):  
Mohamed M. El-Gammal ◽  
Jerzy M. Floryan

Interface deformation and thermocapillary rupture in a non-isothermal cavity with free upper surface is investigated. Temperature variations along the interface are induced by differentially heated walls. The dynamics of the process is modulated by changing mass of the liquid. The results determined for the large Biot and zero Marangoni numbers show the existence of limit points beyond processes leading to the interface rupture set in. Evolution of the limit point as a function of the liquid mass is investigated. The topology of the flow field is very similar regardless of whether the cavity is over-filled or only partially filled. It is shown that the cavity over-filling may, in general, extend the range of admissible capillary numbers and thus it can be used as a tool for prevention of rupture.


2020 ◽  
pp. 1-12
Author(s):  
ENHUI SHI ◽  
XIANGDONG YE

Abstract We show that any action of a countable amenable group on a uniquely arcwise connected continuum has a periodic point of order $\leq 2$ .


2012 ◽  
Vol 204-208 ◽  
pp. 4776-4779
Author(s):  
Lin Huang ◽  
Huo Yun Wang ◽  
Hong Ying Wu

By a dynamical system we mean a compact metric space together with a continuous map . This article is devoted to study of invariant scrambled sets. A dynamical system is a periodically adsorbing system if there exists a fixed point and a periodic point such that and are dense in . We show that every topological weakly mixing and periodically adsorbing system contains an invariant and dense Mycielski scrambled set for some , where has no isolated points. A subset is a Myceilski set if it is a countable union of Cantor sets.


2011 ◽  
Vol 21 (11) ◽  
pp. 3205-3215 ◽  
Author(s):  
ISSAM NAGHMOUCHI

We show that, for monotone graph map f, all the ω-limit sets are finite whenever f has periodic point and for monotone dendrite map, any infinite ω-limit set does not contain periodic points. As a consequence, monotone graph and dendrite maps have no Li–Yorke pairs. However, we built a homeomorphism on a dendroid with a scrambled set having nonempty interior.


1987 ◽  
Vol 36 (3) ◽  
pp. 469-474 ◽  
Author(s):  
Bau-Sen Du

Let I be the unit interval [0, 1] of the real line. For integers k ≥ 1 and n ≥ 2, we construct simple piecewise monotonic expanding maps Fk, n in C0 (I, I) with the following three properties: (1) The positive integer n is an expanding constant for Fk, n for all k; (2) The topological entropy of Fk, n is greater than or equal to log n for all k; (3) Fk, n has periodic points of least period 2k · 3, but no periodic point of least period 2k−1 (2m+1) for any positive integer m. This is in contrast to the fact that there are expanding (but not piecewise monotonic) maps in C0(I, I) with very large expanding constants which have exactly one fixed point, say, at x = 1, but no other periodic point.


2011 ◽  
Vol 55-57 ◽  
pp. 1670-1674 ◽  
Author(s):  
Shuai Liu ◽  
Zheng Xuan Wang

In order to study the fractal character of representative complex exponential function just as generalized 3x+1 function T(x). In this essay, we proved that T(x) has periodic points of every period in bound (n, n+1) when n>1 in real axis. Then, we found the distribution of 2-periods points of T(x) in real axis. We put forward the bottom bound of 2-periodic point’s number and proved it. Moreover, we found the number of T(x)’s 2-periodic points in different bounds to validate our conclusion. Then, we extended the conclusion to i-periods points and find similar conclusion. Finally, we proved there exist endless convergence and divergence points of T(x) in real axis.


1999 ◽  
Vol 59 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Tao Li ◽  
Xiangdong Ye

We generalise a result of Hosaka and Kato by proving that if the set of periodic points of a continuous map of a tree is closed then each chain recurrent point is a periodic one. We also show that the topological entropy of a tree map is zero if and only if thew-limit set of each chain recurrent point (which is not periodic) contains no periodic points.


Sign in / Sign up

Export Citation Format

Share Document