Periodic Point at Real Axis for a Generalized 3x+1 Function

2011 ◽  
Vol 55-57 ◽  
pp. 1670-1674 ◽  
Author(s):  
Shuai Liu ◽  
Zheng Xuan Wang

In order to study the fractal character of representative complex exponential function just as generalized 3x+1 function T(x). In this essay, we proved that T(x) has periodic points of every period in bound (n, n+1) when n>1 in real axis. Then, we found the distribution of 2-periods points of T(x) in real axis. We put forward the bottom bound of 2-periodic point’s number and proved it. Moreover, we found the number of T(x)’s 2-periodic points in different bounds to validate our conclusion. Then, we extended the conclusion to i-periods points and find similar conclusion. Finally, we proved there exist endless convergence and divergence points of T(x) in real axis.

1990 ◽  
Vol 10 (1) ◽  
pp. 177-183 ◽  
Author(s):  
John C. Mayer

AbstractThe Julia set Jλ of the complex exponential function Eλ: z → λez for a real parameter λ(0 < λ < 1/e) is known to be a Cantor bouquet of rays extending from the set Aλ of endpoints of Jλ to ∞. Since Aλ contains all the repelling periodic points of Eλ, it follows that Jλ = Cl (Aλ). We show that Aλ is a totally disconnected subspace of the complex plane ℂ, but if the point at ∞ is added, then is a connected subspace of the Riemann sphere . As a corollary, Aλ has topological dimension 1. Thus, ∞ is an explosion point in the topological sense for Âλ. It is remarkable that a space with an explosion point occurs ‘naturally’ in this way.


2021 ◽  
Vol 10 (12) ◽  
pp. 3669-3677
Author(s):  
Gümrah Uysal

We propose a modification for moment-type operators in order to preserve the exponential function $e^{2cx}$ with $c>0$ on real axis. First, we present moment identities. Then, we prove two weighted convergence theorems. Finally, we present a Voronovskaya-type theorem for the new operators.


2020 ◽  
pp. 1-12
Author(s):  
ENHUI SHI ◽  
XIANGDONG YE

Abstract We show that any action of a countable amenable group on a uniquely arcwise connected continuum has a periodic point of order $\leq 2$ .


2011 ◽  
Vol 21 (11) ◽  
pp. 3205-3215 ◽  
Author(s):  
ISSAM NAGHMOUCHI

We show that, for monotone graph map f, all the ω-limit sets are finite whenever f has periodic point and for monotone dendrite map, any infinite ω-limit set does not contain periodic points. As a consequence, monotone graph and dendrite maps have no Li–Yorke pairs. However, we built a homeomorphism on a dendroid with a scrambled set having nonempty interior.


1987 ◽  
Vol 36 (3) ◽  
pp. 469-474 ◽  
Author(s):  
Bau-Sen Du

Let I be the unit interval [0, 1] of the real line. For integers k ≥ 1 and n ≥ 2, we construct simple piecewise monotonic expanding maps Fk, n in C0 (I, I) with the following three properties: (1) The positive integer n is an expanding constant for Fk, n for all k; (2) The topological entropy of Fk, n is greater than or equal to log n for all k; (3) Fk, n has periodic points of least period 2k · 3, but no periodic point of least period 2k−1 (2m+1) for any positive integer m. This is in contrast to the fact that there are expanding (but not piecewise monotonic) maps in C0(I, I) with very large expanding constants which have exactly one fixed point, say, at x = 1, but no other periodic point.


2013 ◽  
Vol 50 (4) ◽  
pp. 509-522 ◽  
Author(s):  
Fatemah Shirazi ◽  
Javad Sarkooh ◽  
Bahman Taherkhani

In the following text we prove that in a generalized shift dynamical system (XГ, σφ) for infinite countable Г and discrete X with at least two elements the following statements are equivalent: the dynamical system (XГ, σφ) is chaotic in the sense of Devaneythe dynamical system (XГ, σφ) is topologically transitivethe map φ: Г → Г is one to one without any periodic point.Also for infinite countable Г and finite discrete X with at least two elements (XГ, σφ) is exact Devaney chaotic, if and only if φ: Г → Г is one to one and φ: Г → Г has niether periodic points nor φ-backwarding infinite sequences.


1996 ◽  
Vol 03 (01) ◽  
pp. 1157-1161
Author(s):  
S. SAWADA ◽  
N. OOKUBO

We propose a “quantum-sponge” model for porous silicon. This model exhibits energy-gap widening and nonexponential decay of photoluminescence describable by the stretched exponential function. These properties are in good agreement with those observed for porous silicon. We suggest that the fractal character of its wave functions is the origin of the nonexponential decay of photoluminescence.


1998 ◽  
Vol 21 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Aliasghar Alikhani-Koopaei

It is known that two commuting continuous functions on an interval need not have a common fixed point. It is not known if such two functions have a common periodic point. In this paper we first give some results in this direction. We then define a new contractive condition, under which two continuous functions must have a unique common fixed point.


Sign in / Sign up

Export Citation Format

Share Document