scholarly journals A quantitative mean ergodic theorem for uniformly convex Banach spaces – ERRATUM

2009 ◽  
Vol 29 (6) ◽  
pp. 1995-1995
Author(s):  
U. KOHLENBACH ◽  
L. LEUŞTEAN
2009 ◽  
Vol 29 (6) ◽  
pp. 1907-1915 ◽  
Author(s):  
U. KOHLENBACH ◽  
L. LEUŞTEAN

AbstractWe provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of Tao of the mean ergodic theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad et al [Local stability of ergodic averages. Trans. Amer. Math. Soc. to appear] and Tao [Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Th. & Dynam. Sys.28(2) (2008), 657–688].


1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Arian Bërdëllima ◽  
Gabriele Steidl

AbstractWe introduce the class of $$\alpha $$ α -firmly nonexpansive and quasi $$\alpha $$ α -firmly nonexpansive operators on r-uniformly convex Banach spaces. This extends the existing notion from Hilbert spaces, where $$\alpha $$ α -firmly nonexpansive operators coincide with so-called $$\alpha $$ α -averaged operators. For our more general setting, we show that $$\alpha $$ α -averaged operators form a subset of $$\alpha $$ α -firmly nonexpansive operators. We develop some basic calculus rules for (quasi) $$\alpha $$ α -firmly nonexpansive operators. In particular, we show that their compositions and convex combinations are again (quasi) $$\alpha $$ α -firmly nonexpansive. Moreover, we will see that quasi $$\alpha $$ α -firmly nonexpansive operators enjoy the asymptotic regularity property. Then, based on Browder’s demiclosedness principle, we prove for r-uniformly convex Banach spaces that the weak cluster points of the iterates $$x_{n+1}:=Tx_{n}$$ x n + 1 : = T x n belong to the fixed point set $${{\,\mathrm{Fix}\,}}T$$ Fix T whenever the operator T is nonexpansive and quasi $$\alpha $$ α -firmly. If additionally the space has a Fréchet differentiable norm or satisfies Opial’s property, then these iterates converge weakly to some element in $${{\,\mathrm{Fix}\,}}T$$ Fix T . Further, the projections $$P_{{{\,\mathrm{Fix}\,}}T}x_n$$ P Fix T x n converge strongly to this weak limit point. Finally, we give three illustrative examples, where our theory can be applied, namely from infinite dimensional neural networks, semigroup theory, and contractive projections in $$L_p$$ L p , $$p \in (1,\infty ) \backslash \{2\}$$ p ∈ ( 1 , ∞ ) \ { 2 } spaces on probability measure spaces.


2013 ◽  
Vol 59 (4-5) ◽  
pp. 352-356
Author(s):  
Douglas S. Bridges ◽  
Hajime Ishihara ◽  
Maarten McKubre-Jordens

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
M. De la Sen ◽  
Mujahid Abbas

This paper proposes a generalized modified iterative scheme where the composed self-mapping driving can have distinct step-dependent composition order in both the auxiliary iterative equation and the main one integrated in Ishikawa’s scheme. The self-mapping which drives the iterative scheme is a perturbed 2-cyclic one on the union of two sequences of nonempty closed subsets Ann=0∞ and Bnn=0∞ of a uniformly convex Banach space. As a consequence of the perturbation, such a driving self-mapping can lose its cyclic contractive nature along the transients of the iterative process. These sequences can be, in general, distinct of the initial subsets due to either computational or unmodeled perturbations associated with the self-mapping calculations through the iterative process. It is assumed that the set-theoretic limits below of the sequences of sets Ann=0∞ and Bnn=0∞ exist. The existence of fixed best proximity points in the set-theoretic limits of the sequences to which the iterated sequences converge is investigated in the case that the cyclic disposal exists under the asymptotic removal of the perturbations or under its convergence of the driving self-mapping to a limit contractive cyclic structure.


2020 ◽  
Vol 9 (3) ◽  
pp. 681-690
Author(s):  
Khairul Saleh ◽  
Hafiz Fukhar-ud-din

Abstract In this work, we propose an iterative scheme to approach common fixed point(s) of a finite family of generalized multi-valued nonexpansive mappings in a CAT(0) space. We establish and prove convergence theorems for the algorithm. The results are new and interesting in the theory of $$CAT\left( 0\right) $$ C A T 0 spaces and are the analogues of corresponding ones in uniformly convex Banach spaces and Hilbert spaces.


2016 ◽  
Vol 95 (1) ◽  
pp. 149-156 ◽  
Author(s):  
NGUYEN VAN DUNG ◽  
VO THI LE HANG

In this paper we first give a negative answer to a question of Amini-Harandi [‘Best proximity point theorems for cyclic strongly quasi-contraction mappings’, J. Global Optim.56 (2013), 1667–1674] on a best proximity point theorem for cyclic quasi-contraction maps. Then we prove some new results on best proximity point theorems that show that results of Amini-Harandi for cyclic strongly quasi-contractions are true under weaker assumptions.


Sign in / Sign up

Export Citation Format

Share Document