Planetesimal formation in the solar nebula

1999 ◽  
Vol 173 ◽  
pp. 17-30
Author(s):  
T.V. Ruzmaikina

AbstractTerrestrial planets, cores of giant planets and small bodies of the solar system − comets and asteroids − resulted from the coagulation of interstellar dust grains, and grains which were melted or evaporated and condensed again in the solar nebula.The paper describes the growth and processing of dust grains and their aggregates, starting from molecular cloud cores through the formation and evolution of the solar nebula and the accumulation of these aggregates in larger solid bodies − planetesimals. Discussed are the processes which could be responsible for the interruption of accumulation in the region of the asteroid belt, and processes which shaped the Kuiper belt.

1979 ◽  
Vol 65 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Per A. Aannestad ◽  
Scott J. Kenyon

2013 ◽  
Vol 559 ◽  
pp. A49 ◽  
Author(s):  
M. Minissale ◽  
E. Congiu ◽  
G. Manicò ◽  
V. Pirronello ◽  
F. Dulieu

2019 ◽  
Vol 15 (S350) ◽  
pp. 216-219
Author(s):  
N. F. W. Ligterink ◽  
J. Terwisscha van Scheltinga ◽  
V. Kofman ◽  
V. Taquet ◽  
S. Cazaux ◽  
...  

AbstractThe emergence of life on Earth may have its origin in organic molecules formed in the interstellar medium. Molecules with amide and isocyanate groups resemble structures found in peptides and nucleobases and are necessary for their formation. Their formation is expected to take place in the solid state, on icy dust grains, and is studied here by far-UV irradiating a CH4:HNCO mixture at 20 K in the laboratory. Reaction products are detected by means of infrared spectroscopy and temperature programmed desorption - mass spectrometry. Various simple amides and isocyanates are formed, showing the importance of ice chemistry for their interstellar formation. Constrained by experimental conditions, a reaction network is derived, showing possible formation pathways of these species under interstellar conditions.


2012 ◽  
Vol 27 (4) ◽  
pp. 117-122
Author(s):  
D. Ishihara ◽  
H. Kaneda ◽  
A. Mouri ◽  
T. Kondo ◽  
S. Suzuki ◽  
...  

2019 ◽  
Vol 5 (4) ◽  
pp. 80
Author(s):  
Emmanuel Dartois

In the ranking of cosmic abundance of the elements, carbon is the second element, after oxygen, able to form multiple bonds propagating the formation of a network, thus playing an essential role in the formation of nanometer- to micrometer-sized interstellar dust grains. Astrophysical spectroscopic observations give us remote access to the composition of carbonaceous and organic interstellar grains. Their presence and abundances from spectroscopic observations and the phases of importance for the Galactic carbon budget are considered in this article.


Sign in / Sign up

Export Citation Format

Share Document