scholarly journals X-ray scattering by interstellar dust grains as a diagnostic tool

2009 ◽  
Vol 500 (1) ◽  
pp. 477-478
Author(s):  
J. Trümper
Nature ◽  
1986 ◽  
Vol 319 (6055) ◽  
pp. 652-653 ◽  
Author(s):  
Yueming Xu ◽  
Richard McCray ◽  
Richard Kelley

1973 ◽  
Vol 52 ◽  
pp. 283-296
Author(s):  
Satio Hayakawa

Observational results of cosmic diffuse X-rays are reviewed with particular emphasis on soft X-rays. The intensity distribution of soft X-rays over the celestial sphere indicates that the diffuse component of soft X-rays consists of an extra-galactic and a galactic component. The absorption of the soft X-rays in the interstellar medium results in heating and ionization of interstellar matter. The ionization rate by X-rays is estimated as about 10–16 s–1 per H atom.The scattering of X-rays by interstellar dust grains produces a halo of an X-ray source and smears out the pulsation of X-ray emission. The scattering coefficient and the halo size are given for some typical grain models.The possibility that the dust grains gain relativistic energy is suggested. It is speculated that the relativistic dust grains in metagalactic space may be responsible for cosmic rays of ultrahigh energies and also for the diffuse X-rays by the interactions with cosmic black-body radiation.


1975 ◽  
Vol 2 (6) ◽  
pp. 325-327
Author(s):  
R.M. Thomas

In this paper we report that the available data on the measured pulsed fraction of X-rays from the Crab Nebula between the energies 0.7 and 300 keV indicate that it is no longer necessary to postulate an intrinsic change in the pulsar spectral index near 30 keV. Furthermore the spectral flattening which is evident at low energies can be entirely attributed, within the precision of the available statistics to the destruction of time coherence of the pulse structure by the scattering action of interstellar dust grains.


1985 ◽  
Vol 5 (3) ◽  
pp. 141-144
Author(s):  
C. Mauche ◽  
P. Gorenstein ◽  
D. Fabricant

Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
Eva-Maria Mandelkow ◽  
Ron Milligan

Microtubules form part of the cytoskeleton of eukaryotic cells. They are hollow libers of about 25 nm diameter made up of 13 protofilaments, each of which consists of a chain of heterodimers of α-and β-tubulin. Microtubules can be assembled in vitro at 37°C in the presence of GTP which is hydrolyzed during the reaction, and they are disassembled at 4°C. In contrast to most other polymers microtubules show the behavior of “dynamic instability”, i.e. they can switch between phases of growth and phases of shrinkage, even at an overall steady state [1]. In certain conditions an entire solution can be synchronized, leading to autonomous oscillations in the degree of assembly which can be observed by X-ray scattering (Fig. 1), light scattering, or electron microscopy [2-5]. In addition such solutions are capable of generating spontaneous spatial patterns [6].In an earlier study we have analyzed the structure of microtubules and their cold-induced disassembly by cryo-EM [7]. One result was that disassembly takes place by loss of protofilament fragments (tubulin oligomers) which fray apart at the microtubule ends. We also looked at microtubule oscillations by time-resolved X-ray scattering and proposed a reaction scheme [4] which involves a cyclic interconversion of tubulin, microtubules, and oligomers (Fig. 2). The present study was undertaken to answer two questions: (a) What is the nature of the oscillations as seen by time-resolved cryo-EM? (b) Do microtubules disassemble by fraying protofilament fragments during oscillations at 37°C?


Sign in / Sign up

Export Citation Format

Share Document