C – Journal of Carbon Research
Latest Publications


TOTAL DOCUMENTS

395
(FIVE YEARS 254)

H-INDEX

15
(FIVE YEARS 8)

Published By Mdpi Ag

2311-5629

2022 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Vladislav V. Shunaev ◽  
Olga E. Glukhova

Graphene nanomesh (GNM) is one of the most intensively studied materials today. Chemical activity of atoms near GNM’s nanoholes provides favorable adsorption of different atoms and molecules, besides that, GNM is a prospect material for growing carbon nanotubes (CNTs) on its surface. This study calculates the dependence of CNT’s growing parameters on the geometrical form of a nanohole. It was determined by the original methodic that the CNT’s growing from circle nanoholes was the most energetically favorable. Another attractive property of GNM is a tunable gap in its band structure that depends on GNM’s topology. It is found by quantum chemical methods that the passivation of dangling bonds near the hole of hydrogen atoms decreases the conductance of the structure by 2–3.5 times. Controlling the GNM’s conductance may be an important tool for its application in nanoelectronics.


2022 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Salvador Ordóñez ◽  
Eva Díaz ◽  
Laura Faba

The development of a hydrogen-based economy is the perfect nexus between the need of discontinuing the use of fossil fuels (trying to mitigate climate change), the development of a system based on renewable energy (with the use of hydrogen allowing us to buffer the discontinuities produced in this generation) and the achievement of a local-based robust energy supply system [...]


2022 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Yury S. Nechaev ◽  
Evgeny A. Denisov ◽  
Nadezhda A. Shurygina ◽  
Alisa O. Cheretaeva ◽  
Ekaterina K. Kostikova ◽  
...  

An effective methodology for the detailed analysis of thermal desorption spectra (TDS) of hydrogen in carbon structures at micro- and nanoscale was further developed and applied for a number of TDS data of one heating rate, in particular, for graphite materials irradiated with atomic hydrogen. The technique is based on a preliminary description of hydrogen desorption spectra by symmetric Gaussians with their special processing in the approximation of the first- and the second-order reactions. As a result, the activation energies and the pre-exponential factors of the rate constants of the hydrogen desorption processes are determined, analyzed and interpreted. Some final verification of the results was completed using methods of numerical simulation of thermal desorption peaks (non-Gaussians) corresponding to the first- and the second-order reactions. The main research finding of this work is a further refinement and/or disclosure of poorly studied characteristics and physics of various states of hydrogen in microscale graphite structures after irradiation with atomic hydrogen, and comparison with the related results for nanoscale carbon structures. This is important for understanding the behavior and relationship of hydrogen in a number of cases of high energy carbon-based materials and nanomaterials.


2022 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Jose A. Villajos

Storage is still limiting the implementation of hydrogen as an energy carrier to integrate the intermittent operation of renewable energy sources. Among different solutions to the currently used compressed or liquified hydrogen systems, physical adsorption at cryogenic temperature in porous materials is an attractive alternative due to its fast and reversible operation and the resulting reduction in storage pressure. The feasibility of cryoadsorption for hydrogen storage depends mainly on the performance of the used materials for the specific application, where metal-organic frameworks or MOFs are remarkable candidates. In this work, gravimetric and volumetric hydrogen uptakes at 77 K and up to 100 bar of commercially available MOFs were measured since these materials are made from relatively cheap and accessible building blocks. These materials also show relatively high porous properties and are currently near to large-scale production. The measuring device was calibrated at different room temperatures to calculate an average correction factor and standard deviation so that the correction deviation is included in the measurement error for better comparability with different measurements. The influence of measurement conditions was also studied, concluding that the available adsorbing area of material and the occupied volume of the sample are the most critical factors for a reproducible measurement, apart from the samples’ preparation before measurement. Finally, the actual volumetric storage density of the used powders was calculated by directly measuring their volume in the analysis cell, comparing that value with the maximum volumetric uptake considering the measured density of crystals. From this selection of commercial MOFs, the materials HKUST-1, PCN-250(Fe), MOF-177, and MOF-5 show true potential to fulfill a volumetric requirement of 40 g·L−1 on a material basis for hydrogen storage systems without further packing of the powders.


2022 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Petros Kasaira Mubari ◽  
Théotime Beguerie ◽  
Marc Monthioux ◽  
Elsa Weiss-Hortala ◽  
Ange Nzihou ◽  
...  

Structural properties of carbonized cellulose were explored to conjugate the outcomes from various characterization techniques, namely X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy. All these techniques have evidenced the formation of graphene stacks with a size distribution. Cellulose carbonized at 1000 and 1800 °C at a heating rate of 2 °C/min showed meaningful differences in Raman spectroscopy, whereas in XRD, the differences were not well pronounced, which implies that the crystallite sizes calculated by each technique have different significations. In the XRD patterns, the origin of a specific feature at a low scattering angle commonly reported in the literature but poorly explained so far, was identified. The different approaches used in this study were congruous in explaining the observations that were made on the cellulose-derived carbon samples. The remnants of the basic structural unit (BSU) are developed during primary carbonization. Small graphene-based crystallites inherited from the BSUs, which formerly developed during primary carbonization, were found to coexist with larger ones. Even if the three techniques give information on the average size of graphenic domains, they do not see the same characteristics of the domains; hence, they are not identical, nor contradictory but complementary. The arguments developed in the work to explain which characteristics are deduced from the signal obtained by each of the three characterization techniques relate to physics phenomena; hence, they are quite general and, therefore, are valid for all kind of graphenic materials.


2021 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Izabela Kościk ◽  
Daniel Jankowski ◽  
Anna Jagusiak

Based on statistics from the National Cancer Institute in the US, the rate of new cases of cancer is 442.4 per 100,000 men and women per year, and more than one-third do not survive the disease. Cancer diagnosis and treatment are the most important challenges in modern medicine. The majority of cancer cases are diagnosed at an early stage. However, the possibility of simultaneous diagnosis and application of therapy (theranostics) will allow for acceleration and effectiveness of treatment. Conventional chemotherapy is not effective in reducing the chemoresistance and progression of various types of cancer. In addition, it causes side effects, which are mainly a result of incorrect drug distribution. Hence, new therapies are being explored as well as new drug delivery strategies. In this regard, nanotechnology has shown promise in the targeted delivery of therapeutics to cancer cells. This review looks at the latest advances in drug delivery-based diagnosis and therapy. Drug delivery nanosystems made of various types of carbon (graphene, fullerenes, and carbon nanotubes) are discussed. Their chemical properties, advantages, and disadvantages are explored, and these systems are compared with each other.


2021 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Sahira Joshi ◽  
Rekha Goswami Shrestha ◽  
Raja Ram Pradhananga ◽  
Katsuhiko Ariga ◽  
Lok Kumar Shrestha

Nanoporous carbon materials from biomass exhibit a high surface area due to well-defined pore structures. Therefore, they have been extensively used in separation and purification technologies as efficient adsorbents. Here, we report the iodine and methylene blue adsorption properties of the hierarchically porous carbon materials prepared from Areca catechu nut. The preparation method involves the phosphoric acid (H3PO4) activation of the Areca catechu nut powder. The effects of carbonization conditions (mixing ratio with H3PO4, carbonization time, and carbonization temperature) on the textural properties and surface functional groups were studied. The optimum textural properties were obtained at a mixing ratio of 1:1, carbonized for 3 h at 400 °C, and the sample achieved a high specific surface area of 2132.1 m2 g−1 and a large pore volume of 3.426 cm3 g−1, respectively. The prepared materials have amorphous carbon structures and contain oxygenated surface functional groups. Due to the well-defined micro-and mesopore structures with the high surface area and large pore volume, the optimal sample showed excellent iodine and methylene blue adsorption. The iodine number and methylene blue values were ca. 888 mg g−1 and 369 mg g−1, respectively. The batch adsorption studies of methylene dye were affected by pH, adsorbent dose, contact time, and initial concentration. The optimum parameters for the methylene blue adsorption were in alkaline pH, adsorbent dose of 2.8 g L−1, and contact time of 180 min. Equilibrium data could be best represented by the Langmuir isotherm model with a monolayer adsorption capacity of 333.3 mg g−1. Thus, our results demonstrate that the Areca catechu nut has considerable potential as the novel precursor material for the scalable production of high surface area hierarchically porous carbon materials that are essential in removing organic dyes from water.


2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Varun Shenoy Gangoli ◽  
Chris J. Barnett ◽  
James D. McGettrick ◽  
Alvin Orbaek White ◽  
Andrew R. Barron

We report the effect of annealing, both electrical and by applied voltage, on the electrical conductivity of fibers spun from carbon nanotubes (CNTs). Commercial CNT fibers were used as part of a larger goal to better understand the factors that go into making a better electrical conductor from CNT fibers. A study of thermal annealing in a vacuum up to 800 °C was performed on smaller fiber sections along with a separate analysis of voltage annealing up to 7 VDC; both exhibited a sweet spot in the process as determined by a combination of a two-point probe measurement with a nanoprobe, resonant Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Scaled-up tests were then performed in order to translate these results into bulk samples inside a tube furnace, with similar results that indicate the potential for an optimized method of achieving a better conductor sample made from CNT fibers. The results also help to determine the surface effects that need to be overcome in order to achieve this.


2021 ◽  
Vol 7 (4) ◽  
pp. 86
Author(s):  
Yuri Natori ◽  
Yoshiaki Kinase ◽  
Norihiro Ikemoto ◽  
Fabio Spaziani ◽  
Tsutomu Kojima ◽  
...  

An iodine-doped activated carbon (named IodAC) was developed by adsorbing molecular iodine (I2) on commercially available activated carbon (AC). Iodine was selected with the purpose to add its well-known antibacterial and antiviral properties to the AC and in order to produce an innovative material for environmental pathogens control and for healthcare-related applications. The impregnation method achieved the goal of strongly adsorbing iodine on the AC surface, since both volatility and water solubility resulted to be negligible, and therefore it did not affect the stability of the material. An antibacterial test (on Escherichia coli) and an antiviral test (on an avian influenza strain) were conducted, showing the effectiveness of IodAC against the pathogens. In addition, IodAC was also compared to slaked lime (a material widely used for disinfection of outdoor spaces and livestock farming areas). The data proved the performance of IodAC against virus and bacteria and also evidenced a more stable and long-lasting disinfecting power of IodAC compared to slaked lime, the later reacting with carbon dioxide and suffering a gradually decrease of its disinfectant power; such drawback does not affect IodAC. Overall, the presented results show that IodAC can be used for a wide range of applications, including as a granular disinfectant for public spaces, for water disinfection, zoonotic diseases countermeasures (e.g., as an animal feed additive for avian influenza control), post-harvest food storage, and sanitization. Its characteristics also indicate its potential to be used for medical treatments, such as for blood, intestinal (for HIV, sepsis, irritable syndrome, ulcerative colitis therapy), and medical supplies (antibacterial bandages, gauze, cotton, etc.) sterilization.


2021 ◽  
Vol 7 (4) ◽  
pp. 85
Author(s):  
Susheel K. Mittal ◽  
Shivali Gupta ◽  
Manmohan Chhibber

The past two decades have seen considerable attention given to chemical sensing due to its quick, reproducible, and accurate results. These are extensively used for the detection of cations and anions in different environmental matrices. Organic-molecule-based sensors have proved to be a great promising tool in determining target species. This communication demonstrates the use of triphenylether derivatives (L1–L4) as receptors for the sensing of cations and anions, using voltammetry as a sensing tool. The effect of the oxidative/reductive nature of the ionophores and, hence, their selectivity behavior was studied in MeCN and MeOH solvents. Three receptors (L2–L4) responded selectively towards cyanide ions following the intramolecular charge-transfer mechanism, while sensing in the case of L1 was not studied because it lacked a proper cavity size.


Sign in / Sign up

Export Citation Format

Share Document