scholarly journals 8. Asteroid Versus Comet Discrimination from Orbital Data

1977 ◽  
Vol 39 ◽  
pp. 313-321 ◽  
Author(s):  
L. Kresak

The orbital comet-asteroid criteria, their premises, dynamical reasoning, and ranges of applicability are reviewed. Mapping of all known comets and asteroids in a plane of energy intergral in the two body problem (1/a) vs. that in the restricted three-body problem (Tisserand invariant) is presented. The potential evolutionary paths from different sources of active comets into short-period orbits are delineated and interfaced with the process of reducing the perihelion distances of the asteroids. The significance of resonances with Jupiter is emphasized. Statistics of observed close approaches of individual comets and asteroids to the Earth is analyzed to estimate their relative fluxes. Active cometary nuclei are found to represent about 1/8 of the flux of objects with radii exceeding 1 km in the vicinity of the Earth, and their contribution tends to diminish significantly for still smaller bodies. However, there is no evidence against comets leaving inactive asteroid-like nuclei with considerable lifetimes which may represent a significant, though secondary, source of meteors and even meteor streams. An overwhelming majority of the Apollo and Amor objects are suggested to be of asteroidal nature; the most probable exceptions are selected and recommended for detailed observation.

1971 ◽  
Vol 13 ◽  
pp. 331-341
Author(s):  
Lubor Kresák

A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. In an approximation to the restricted three-body problem, Sun-Jupiter-comet/asteroid, the value of the Jacobian integral represents a parameter of conspicuous stability which can be applied to delineate the evolutionary paths of the potential parent bodies of the meteoroids in the system of conventional orbital elements. Earth-crossing orbits can be reached along three main paths by the comets, and along two by the asteroids.The structure of meteor streams, however, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits, from those of faint Super-Schmidt meteors up to those of meteorite-dropping fireballs, furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.


1972 ◽  
Vol 45 ◽  
pp. 503-514 ◽  
Author(s):  
L. Kresák

A simplified form of the Jacobi integral in the three-body system Sun-Jupiter-comet or asteroid provides an excellent method for discriminating between cometary and asteroidal orbits. Omitting the librating bodies, unambiguous separation is obtained for all known objects with reliable orbital data, i.e., about 600 comets and 1800 asteroids. The only exception is the peculiar asteroid 944 Hidalgo – which is presumably a comet. The intermediate region is occupied exclusively by bodies revolving in resonance with Jupiter, and the value of the libration argument yields a sharp secondary criterion in these cases. Besides the direct perturbational capture of long-period comets from high-eccentricity orbits into Jupiter's family, a ring of nearly circular orbits between Jupiter and Saturn is suggested as another significant source of short-period comets. For these comets the subsequent operation of nongravitational effects gives a better chance of injection into small orbits of the Apollo type and for the formation of short-period meteor streams. Some phenomena (the outbursts of P/Schwassmann-Wachmann 1, the probable recent splitting of one parent body into P/Whipple and P/Shajn-Schaldach) give reasons for speculation about the population of this region, too distant for the discovery of typical asteroids or comets, by interplanetary particles up to sizeable solid bodies.


2016 ◽  
Vol 26 (05) ◽  
pp. 1630013 ◽  
Author(s):  
Amanda F. Haapala ◽  
Kathleen C. Howell

The Earth–Moon libration points are of interest for future missions and have been proposed for both storage of propellant and supplies for lunar missions and as locations to establish space-based facilities for human missions. Thus, further development of an available transport network in the vicinity of the Moon is valuable. In this investigation, a methodology to search for transfers between periodic lunar libration point orbits is developed, and a catalog of these transfers is established, assuming the dynamics associated with the Earth–Moon circular restricted three-body problem. Maneuver-free transfers, i.e. heteroclinic and homoclinic connections, are considered, as well as transfers that require relatively small levels of [Formula: see text]. Considering the evolution of Earth–Moon transfers as the mass parameter is reduced, a relationship emerges between the available transfers in the Earth–Moon system and maneuver-free transfers that exist within the Hill three-body problem. The correlation between transfers in these systems is examined and offers insight into the existence of solutions within the catalog. To demonstrate the persistence of the catalog transfers in a higher-fidelity model, several solutions are transitioned to a Sun–Earth–Moon ephemeris model with the inclusion of solar radiation pressure and lunar gravity harmonics. The defining characteristics are preserved in the high-fidelity model, validating both the techniques employed for this investigation and the solutions computed within the catalog.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qiwei Guo ◽  
Bo Xu ◽  
Hanlun Lei

The attitude motion of a rigid spacecraft is studied in the Earth-Moon circular restricted three-body problem. Firstly, the equilibrium attitude and its stability as functions of the moments of inertia are discussed when the spacecraft is assumed at the libration points. Then, periodic attitudes of a spacecraft with mass distribution given in the stable regions are obtained. Regarding space mission applications, the Sun orientation is discussed, and the orbit-attitude resonances are constructed for spacecrafts working on the libration point orbits by means of a continuation procedure.


1978 ◽  
Vol 41 ◽  
pp. 53-55
Author(s):  
V. Szebehely

AbstractThe stability of the three-body problem formed by the Sun, Jupiter and Saturn is investigated using surfaces of zero velocity. The results obtained with the models of the restricted and general problems of three bodies are compared with numerical integration. The system is found to be stable in the sense that Saturn will neither interrupt the (perturbed) binary orbit of Jupiter around the Sun, nor will it escape from the system. It is shown that the known classical triple stellar systems are “more stable” than the solar system, which in turn is “more stable” than the Earth-Moon system.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Li-Bo Liu ◽  
Ying-Jing Qian ◽  
Xiao-Dong Yang

The initial parameters about resonant orbits in the Earth-Moon system were investigated in this study. Resonant orbits with different ratios are obtained in the two-body problem and planar circular restricted three-body problem (i.e., PCRTBP). It is found that the eccentricity and initial phase are two important initial parameters of resonant orbits that affect the closest distance between the spacecraft and the Moon. Potential resonant transition or resonant flyby may occur depending on the possibility of the spacecraft approaching the Moon. Based on an analysis of ballistic capture and flyby, the Kepler energy and the planet’s perturbed gravitational sphere are used as criteria to establish connections between the initial parameters and the possible “steady” resonant orbits. The initial parameter intervals that can cause instability of the resonant orbits in the CRTBP are obtained. Examples of resonant orbits in 1:2 and 2:1 resonances are provided to verify the proposed criteria.


2015 ◽  
Vol 116 ◽  
pp. 25-35 ◽  
Author(s):  
Jeannette Heiligers ◽  
Sander Hiddink ◽  
Ron Noomen ◽  
Colin R. McInnes

2021 ◽  
Vol 133 (11-12) ◽  
Author(s):  
José J. Rosales ◽  
Àngel Jorba ◽  
Marc Jorba-Cuscó

AbstractThis paper deals with direct transfers from the Earth to Halo orbits related to the translunar point. The gravitational influence of the Sun as a fourth body is taken under consideration by means of the Bicircular Problem (BCP), which is a periodic time dependent perturbation of the Restricted Three Body Problem (RTBP) that includes the direct effect of the Sun on the spacecraft. In this model, the Halo family is quasi-periodic. Here we show how the effect of the Sun bends the stable manifolds of the quasi-periodic Halo orbits in a way that allows for direct transfers.


Sign in / Sign up

Export Citation Format

Share Document