scholarly journals Gravitational Collapse of Mass-Accreting White Dwarfs

1989 ◽  
Vol 114 ◽  
pp. 88-91
Author(s):  
J. Isern ◽  
R. Canal ◽  
D. García ◽  
M. Hernanz ◽  
J. Labay

Massive star (M ≥ 10 M ) core collapse is the standard mechanism for neutron star formation (see Brown 1988 for a recent review). It has long been realized (see, for instance, van den Heuvel 1988, and references therein) that the neutron stars found in different types of binary systems cannot come from such a standard mechanism. Those systems include wide binary radio pulsars, millisecond pulsars (not in wide binaries), galactic bulge X–ray sources (including QPO’s), type I X–ray burst sources and X–ray transients, andγ–ray sources. Formation of those neutron stars is now widely attributed to the gravitational collapse of a white dwarf, growing above Chandrasekhar’s limit by mass accretion from the current neutron star’s companion in the binary system (Canal and Schatzman 1976; Canal and Isern 1979; Canal, Isern, and Labay 1980; Miyaji et al. 1980). Mass growth up to dynamical instability means that both explosive ejection of the accreted layers and explosive disruption of the whole star must be avoided. The former is associated with the nova phenomenon. The latter, with the occurrence of type I supernovae.

1987 ◽  
Vol 93 ◽  
pp. 665-669
Author(s):  
J. Isern ◽  
R. Canal ◽  
M. Hernanz ◽  
J. Labay

AbstractThere is observational evidence of the presence of young neutron stars in old binary systems. A likely explanation is that those neutron stars were produced in the collapse of old CO white dwarfs. We show how mass accretion on initially solid white dwarfs can leave central solid cores when dynamical instability sets in and we study the different effects of the existence of such cores on the outcome of the competition between thermonuclear explosion and gravitational collapse.


1986 ◽  
Vol 64 (4) ◽  
pp. 474-478 ◽  
Author(s):  
Eric D. Feigelson

The evidence for jets emanating from neutron stars is reviewed. Isolated radio pulsars do not appear to produce collimated outflows. A few supernova remnants, notably the Crab nebula, exhibit jetlike protrusions at their outer boundaries. These are probably "blowouts" of the plasma in the remnant rather than true jets from a neutron star. However, several cases of degenerate stars in X-ray binary systems do make jets. SS433 has twin precessing jets moving outward at v ~ 0.26c, and Sco X-1 has radio lobes with v ~ 0.0001c. Cyg X-3 appears to eject synchrotron plasmoids at high velocities. Other X-ray binaries associated with variable radio sources are discussed; some are interesting candidates for collimated outflow. G109.1-1.0 is an X-ray binary in a supernova remnant that may have radio or X-ray jets. It is not clear in all these cases, however, that the compact object is a neutron star and not a black hole or white dwarf.A tentative conclusion is reached that isolated neutron stars do not produce jets, but degenerate stars in accreting binary systems can. This suggests that the presence of an accretion disk, rather than the characteristics of an isolated pulsar's dipole magnetosphere, is critical in making collimated outflows.


1987 ◽  
Vol 125 ◽  
pp. 383-392
Author(s):  
J. H. Taylor

The Galaxy contains a large number of neutron stars in gravitation-ally bound binary systems. Among the most fruitful of these to study have been the binary radio pulsars, of which seven are now known. Unlike the “accretion-powered” neutron stars located in mass-exchanging X-ray binary systems, the “rotation-powered” binary radio pulsars are found in dynamically simple, clean systems in which both stellar components have already completed their nuclear evolution, thereby shedding their atmospheres and most of their mass. In such circumstances the orbital parameters of the system and the rotational parameters of the pulsar can be determined with high precision from analysis of pulse timing data. These measurements constrain the component masses and yield an estimate of the pulsar's magnetic dipole moment, which turns out to be an essential parameter in understanding the evolution of the systems. In this paper I review the known facts concerning binary pulsars, and then briefly discuss some implications for our understanding of the place of neutron stars in stellar evolution.


1981 ◽  
Vol 95 ◽  
pp. 353-356
Author(s):  
R. L. Kelley ◽  
S. Rappaport

The masses of 6 neutron stars have now been established through studies of binary X-ray and radio pulsars. All of the masses are found to be consistent with, but not necessarily constrained to, the range 1.2–1.6 M⊙. In this talk we discuss the methods and assumptions used in determining the masses of neutron stars in binary X-ray pulsar systems. For other recent reviews of this subject, the reader is referred to Bahcall (1978), Rappaport and Joss (1981), and references therein. Neutron-star parameters may also be obtained from studies of X-ray bursts that result from thermonuclear flashes near the surface of an accreting neutron star (see Joss 1980 and references therein), which we will not discuss here.


2000 ◽  
Vol 177 ◽  
pp. 699-702 ◽  
Author(s):  
E. V. Gotthelf ◽  
G. Vasisht

AbstractWe propose a simple explanation for the apparent dearth of radio pulsars associated with young supernova remnants (SNRs). Recent X-ray observations of young remnants have revealed slowly rotating (P∼ 10s) central pulsars with pulsed emission above 2 keV, lacking in detectable radio emission. Some of these objects apparently have enormous magnetic fields, evolving in a manner distinct from the Crab pulsar. We argue that these X-ray pulsars can account for a substantial fraction of the long sought after neutron stars in SNRs and that Crab-like pulsars are perhaps the rarer, but more highly visible example of these stellar embers. Magnetic field decay likely accounts for their high X-ray luminosity, which cannot be explained as rotational energy loss, as for the Crab-like pulsars. We suggest that the natal magnetic field strength of these objects control their subsequent evolution. There are currently almost a dozen slow X-ray pulsars associated with young SNRs. Remarkably, these objects, taken together, represent at least half of the confirmed pulsars in supernova remnants. This being the case, these pulsars must be the progenitors of a vast population of previously unrecognized neutron stars.


2016 ◽  
Vol 12 (S329) ◽  
pp. 32-38
Author(s):  
Morgan Fraser

AbstractLinking core-collapse SNe to their stellar progenitors is a major ongoing challenge. To date, H rich Type IIP SNe have been shown to come from red supergiants, while there is increasing evidence that the majority of stripped envelope SNe come from binary systems. The first candidates for failed SNe, where a massive star collapses to form a black hole without a bright optical display have been identified, while the range of outbursts and eruptions from pre-SN stars are just beginning to be revealed.


1974 ◽  
Vol 64 ◽  
pp. 194-212
Author(s):  
M. J. Rees

The physics of spherically symmetrical accretion onto a compact object is briefly reviewed. Neither neutron stars nor stellar-mass black holes are likely to be readily detectable if they are isolated and accreting from the interstellar medium. Supermassive black holes in intergalactic space may however be detectable. The effects of accretion onto compact objects in binary systems are then discussed, with reference to the phenomena observed in variable X-ray sources.


1987 ◽  
Vol 125 ◽  
pp. 67-78
Author(s):  
Ramesh Narayan

The radio pulsars in the Galaxy are found predominantly in the disk, with a scale height of several hundred parsecs. After allowing for pulsar velocities, the data are consistent with the hypothesis that single pulsars form from massive stellar progenitors. The number of active single pulsars in the Galaxy is ∼ 1.5 × 105, and their birthrate is 1 per ∼ 60 yrs. There is some evidence that many single pulsars, particularly those with high magnetic fields, are born spinning slowly, with initial periods ∼ 0.5–1s. This could imply an origin through binary “recycling” followed by orbit disruption, or might suggest that the pre-supernova stellar core efficiently loses angular momentum to the envelope through magnetic coupling. The birthrate of binary radio pulsars, particularly of the millisecond variety, seems to be much larger than previous estimates, and might suggest that these systems do not originate in low mass X-ray binary systems.


2005 ◽  
Vol 14 (06) ◽  
pp. 1075-1082 ◽  
Author(s):  
AŞKIN ANKAY ◽  
SERKAN ŞAHIN ◽  
GÖKÇE KARANFIL ◽  
EFE YAZGAN

Two Galactic isolated strong X-ray pulsars seem to be in the densest environments compared to other types of Galactic pulsar. X-ray pulsar J1846-0258 can be in an early phase of anomalous X-ray pulsars and soft gamma repeaters if its average braking index is ~1.8–2.0. X-ray pulsar J1811-1925 must have a very large average braking index (~11) if this pulsar was formed by SN 386AD. This X-ray pulsar can be in an early phase of the evolution of the radio pulsars located in the region P ~ 50–150 ms and Ṗ ~ 10-14–10-16 ss -1 of the P–Ṗ diagram. X-ray/radio pulsar J0540-69 seems to be evolving in the direction to the dim isolated thermal neutron star region on the P–Ṗ diagram. Possible progenitors of different types of neutron star are also discussed.


Sign in / Sign up

Export Citation Format

Share Document