radio pulsar
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 27)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 5 (12) ◽  
pp. 279
Author(s):  
Tilemachos M. Athanasiadis ◽  
Nataliya K. Porayko ◽  
John Antoniadis ◽  
David Champion ◽  
Olaf Wucknitz ◽  
...  

Abstract 2MASS J050051.85−093054.9 is the closest known low-mass helium-core white dwarf in a binary system. We used three high-band international Low-Frequency Array stations to perform a targeted search for a pulsar companion, reaching sensitivities of ∼3 mJy for a 10 ms pulsar at a DM = 1 pc cm−3. No pulsed signal was detected, confidently excluding the presence of a detectable radio pulsar in the system.


Author(s):  
C H Agar ◽  
P Weltevrede ◽  
L Bondonneau ◽  
J-M Grießmeier ◽  
J W T Hessels ◽  
...  

Abstract We present radio observations of the most slowly rotating known radio pulsar PSR J0250+5854. With a 23.5 s period, it is close, or even beyond, the P-$\dot{P}$ diagram region thought to be occupied by active pulsars. The simultaneous observations with FAST, the Chilbolton and Effelsberg LOFAR international stations, and NenuFAR represent a five-fold increase in the spectral coverage of this object, with the detections at 1250 MHz (FAST) and 57 MHz (NenuFAR) being the highest- and lowest-frequency published respectively to date. We measure a flux density of 4 ± 2 μJy at 1250 MHz and an exceptionally steep spectral index of $-3.5^{+0.2}_{-1.5}$, with a turnover below ∼95 MHz. In conjunction with observations of this pulsar with the GBT and the LOFAR Core, we show that the intrinsic profile width increases drastically towards higher frequencies, contrary to the predictions of conventional radius-to-frequency mapping. We examine polarimetric data from FAST and the LOFAR Core and conclude that its polar cap radio emission is produced at an absolute height of several hundreds of kilometres around 1.5 GHz, similar to other rotation-powered pulsars across the population. Its beam is significantly underfilled at lower frequencies, or it narrows because of the disappearance of conal outriders. Finally, the results for PSR J0250+5854 and other slowly spinning rotation-powered pulsars are contrasted with the radio-detected magnetars. We conclude that magnetars have intrinsically wider radio beams than the slow rotation-powered pulsars, and that consequently the latter’s lower beaming fraction is what makes objects such as PSR J0250+5854 so scarce.


Author(s):  
A Borghese ◽  
N Rea ◽  
R Turolla ◽  
M Rigoselli ◽  
J A J Alford ◽  
...  

Abstract After 15 years, in late 2018, the magnetar XTE J1810–197 underwent a second recorded X-ray outburst event and reactivated as a radio pulsar. We initiated an X-ray monitoring campaign to follow the timing and spectral evolution of the magnetar as its flux decays using Swift, XMM–Newton, NuSTAR, and NICER observations. During the year-long campaign, the magnetar reproduced similar behaviour to that found for the first outburst, with a factor of two change in its spin-down rate from ∼7.2 × 10−12 s s−1 to ∼1.5 × 10−11 s s−1 after two months. Unique to this outburst, we confirm the peculiar energy-dependent phase shift of the pulse profile. Following the initial outburst, the spectrum of XTE J1810–197 is well-modelled by multiple blackbody components corresponding to a pair of non-concentric, hot thermal caps surrounded by a cooler one, superposed to the colder star surface. We model the energy-dependent pulse profile to constrain the viewing and surface emission geometry and find that the overall geometry of XTE J1810–197 has likely evolved relative to that found for the 2003 event.


2020 ◽  
Vol 501 (2) ◽  
pp. 2156-2173
Author(s):  
J Dyks ◽  
P Weltevrede ◽  
C Ilie

ABSTRACT The radio emission of pulsar B1451−68 contains two polarization modes of similar strength, which produce two clear orthogonal polarization angle tracks. When viewed on a Poincaré sphere, the emission is composed of two flux patches that rotate meridionally as a function of pulse longitude and pass through the Stokes V poles, which results in transitions between orthogonal polarization modes (OPMs). Moreover, the ratio of power in the patches is inversed once within the profile window. It is shown that the meridional circularization is caused by a coherent OPM transition (COMT) produced by a varying mode ratio at a fixed quarter-wave phase lag. The COMTs may be ubiquitous and difficult to detect in radio pulsar data, because they can leave no trace in polarized fractions and they are described by equation similar to the rotating vector model. The circularization, which coincides with flux minima at lower frequency, requires that profile components are formed by radiation with an oscillation phase that increases with longitude in steps of 90○ per component. The properties can be understood as an interference pattern involving two pairs of linear orthogonal modes (or two non-orthogonal elliptic waves). The frequency-dependent coherent superposition of coplanar oscillations can produce the minima in the pulse profile, and thereby the illusion of components as separate entities. The orthogonally polarized signal that is left after such negative interference explains the enhancement of polarization degree that is commonly observed in the minima between profile components.


2020 ◽  
Vol 643 ◽  
pp. A173
Author(s):  
V. Doroshenko ◽  
A. Santangelo ◽  
V. F. Suleimanov ◽  
S. S. Tsygankov

The phenomenology of anomalous X-ray pulsars is usually interpreted within the paradigm of very highly magnetized neutron stars, also known as magnetars. According to this paradigm, the persistent emission of anomalous X-ray pulsars (AXPs) is powered by the decay of the magnetic field. However, an alternative scenario in which the persistent emission is explained through accretion is also discussed in literature. In particular, AXP 4U 0142+61 has been suggested to be either an accreting neutron star or a white dwarf. Here, we rule out this scenario based on the observed X-ray variability properties of the source. We directly compare the observed power spectra of 4U 0142+61 and of two other magnetars, 1RXS J170849.0−400910 and 1E 1841−045 with that of the X-ray pulsar 1A 0535+262, and of the intermediate polar GK Persei. In addition, we include a bright young radio pulsar PSR B1509-58 for comparison. We show that, unlike accreting sources, no aperiodic variability within the expected frequency range is observed in the power density spectrum of the magnetars and the radio pulsar. Considering that strong variability is an established feature of all accreting systems from young stellar objects to super-massive black holes and the absence of the variability reports from other magnetars, we conclude that our results also indicate that magnetars, in general, are not powered by accretion.


2020 ◽  
Vol 20 (11) ◽  
pp. 188
Author(s):  
Qing-Dong Wu ◽  
Qi-Jun Zhi ◽  
Cheng-Min Zhang ◽  
De-Hua Wang ◽  
Chang-Qing Ye
Keyword(s):  

2020 ◽  
Vol 498 (1) ◽  
pp. 674-679 ◽  
Author(s):  
Ş Özcan ◽  
A A Gençali ◽  
Ü Ertan

ABSTRACT The rotational properties and X-ray luminosity of PSR J0726–2612 are close to those of dim isolated neutron stars (XDINs). It was proposed that the source could be the first XDIN with observable pulsed radio emission. We have investigated the long-term evolution of the source to test this possibility in the fallback disc model. Reasonable model curves that can account for the evolution of PSR J0726–2612 consistently with its radio pulsar property are similar to those of high-B radio pulsars with dipole field strength B0 ∼ a few × 1012 G at the pole of the star. In the same model, XDINs are estimated to have relatively weak fields (B0 ≲ 1012 G) locating them well below the pulsar death line. From the simulations, we estimate that PSR J0726–2612 is at an age of t ∼ 5 × 104 yr, and will achieve the rotational properties of a normal radio pulsar within ∼105 yr, rather than the XDIN properties.


Sign in / Sign up

Export Citation Format

Share Document