scholarly journals Ultraluminous X-Ray Sources: an Observational Review

2004 ◽  
Vol 194 ◽  
pp. 46-49
Author(s):  
G. Fabbiano

AbstractUltraluminous X-ray Sources (ULXs) are, as suggested by their name, extremely luminous and rare X-ray emitting objects found in galaxies. Because of their luminosity, it has been suggested that they may be powered by accretion onto a black hole (BH) of a few 100 M⊙, more massive than what one would expect to originate from normal stellar evolution. Alternative models include young supernova remnants (SNRs) beamed emission from normal BH X-ray binaries (XRB) with high accretion rates, and relativistically beamed XRB omission. The observational evidence on ULXs suggests that while most of them are likely to be compact accreting objects, there is no clear unique evidence pointing either to the beamed XRB model or to accretion onto a very massive BH. It is possible that what we call ULXs are a heterogeneous family of X-ray sources.

2014 ◽  
Vol 10 (S312) ◽  
pp. 139-140
Author(s):  
Fu-Guo Xie

AbstractSignificant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.


2006 ◽  
Vol 2 (S238) ◽  
pp. 3-12 ◽  
Author(s):  
Jorge Casares

AbstractRadial velocity studies of X-ray binaries provide the most solid evidence for the existence of stellar-mass black holes. We currently have 20 confirmed cases, with dynamical masses in excess of 3 M⊙. Accurate masses have been obtained for a subset of systems which gives us a hint at the mass spectrum of the black hole population. This review summarizes the history of black hole discoveries and presents the latest results in the field.


2018 ◽  
Vol 615 ◽  
pp. A57 ◽  
Author(s):  
G. Marcel ◽  
J. Ferreira ◽  
P.-O. Petrucci ◽  
G. Henri ◽  
R. Belmont ◽  
...  

Context. X-ray binaries display cycles of strong activity during which their luminosity varies across several orders of magnitude. The rising phase is characterized by a hard X-ray spectrum and radio emission due to jets (hard state), whereas the declining phase displays a soft X-ray spectrum and no jet signature (soft state). The origin of these correlated accretion-ejection and spectral hysteresis cycles is still under investigation. Aims. We elaborate on the previously described paradigm, where the increase and decrease in the disk accretion rate is accompanied by a modification of the disk magnetization μ, which in turn determines the dominant torque allowing accretion. For μ greater than some threshold, the accretion flow produces jets that vertically carry away the disk angular momentum (jet-emitting disk, or JED mode), whereas for smaller μ, the turbulence transfers the disk angular momentum outward in the radial direction (standard accretion disk, or SAD mode). The goal of this paper is to investigate the spectral signatures of the JED configurations. Methods. We have developed a two-temperature plasma code that computes the disk local thermal equilibria, taking into account the advection of energy in an iterative way. Our code addresses optically thin/thick transitions, both radiation and gas supported regimes, and computes in a consistent way the emitted spectrum from a steady-state disk. The optically thin emission is obtained using the BELM code, which provides accurate spectra for bremsstrahlung and synchrotron emission processes as well as for their local Comptonization. Results. For a range in radius and accretion rates, JEDs exhibit three thermal equilibria, one thermally unstable and two stable: a cold (optically thick and geometrically thin) and a hot (optically thin and geometrically thick) equilibrium. From the two thermally stable solutions, a hysteresis cycle is naturally obtained. However, standard outbursting X-ray binary cycles cannot be reproduced. Another striking feature of JEDs is their ability to reproduce luminous hard states. At high accretion rates, JEDs become slim, where the main cooling is advection. Conclusions. When the loss of angular momentum and power in jets is consistently taken into account (JED mode), accretion disks have spectral signatures that are consistent with hard states, up to high luminosities. When no jet is present (SAD mode), the spectral signature is consistent with the soft state. These two canonical spectral states of black hole binaries can be explained in terms of two completely different dynamical solutions, namely JED and SAD. The observed spectral cycles can therefore be directly understood in terms of dynamical transitions from one accretion mode to another. These transitions must involve states where some regions emit jets and others do not, however, which argues for hybrid disk configurations.


1998 ◽  
Vol 188 ◽  
pp. 388-389
Author(s):  
A. Kubota ◽  
K. Makishima ◽  
T. Dotani ◽  
H. Inoue ◽  
K. Mitsuda ◽  
...  

About 10 X-ray binaries in our Galaxy and LMC/SMC are considered to contain black hole candidates (BHCs). Among these objects, Cyg X-1 was identified as the first BHC, and it has led BHCs for more than 25 years(Oda 1977, Liang and Nolan 1984). It is a binary system composed of normal blue supergiant star and the X-ray emitting compact object. The orbital kinematics derived from optical observations indicates that the compact object is heavier than ~ 4.8 M⊙ (Herrero 1995), which well exceeds the upper limit mass for a neutron star(Kalogora 1996), where we assume the system consists of only two bodies. This has been the basis for BHC of Cyg X-1.


2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2021 ◽  
pp. 101618
Author(s):  
S.E. Motta ◽  
J. Rodriguez ◽  
E. Jourdain ◽  
M. Del Santo ◽  
G. Belanger ◽  
...  
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document