scholarly journals Estimating Oceanic Heat Flux from Sea-Ice Thickness and Temperature Data

1990 ◽  
Vol 14 ◽  
pp. 315-318 ◽  
Author(s):  
J.S. Wettlaufer ◽  
N. Untersteiner ◽  
R. Colony

All studies and models of air—sea-ice interactions suffer from a paucity of information about the oceanic heat flux, which exerts a controlling influence on the sea-ice energy and mass balance. The role of the oceanic heat flux in the sea-ice energy and mass balance is discussed. The performance of ice-ocean models depends on a satisfactory specification of this rarely measured oceanic parameter. A method for determining the oceanic heat flux by measuring the temperatures and thickness of sea ice is described. The results obtained using this method and the data collected during the fall of 1988 in the eastern Arctic are presented. Values of the oceanic heat flux ranging from 0 to 37 W m−2 were estimated from observations taken in the region north-east of Fram Strait. The oceanic heat flux in this region varied in both time and space.

1990 ◽  
Vol 14 ◽  
pp. 315-318 ◽  
Author(s):  
J.S. Wettlaufer ◽  
N. Untersteiner ◽  
R. Colony

All studies and models of air—sea-ice interactions suffer from a paucity of information about the oceanic heat flux, which exerts a controlling influence on the sea-ice energy and mass balance. The role of the oceanic heat flux in the sea-ice energy and mass balance is discussed. The performance of ice-ocean models depends on a satisfactory specification of this rarely measured oceanic parameter. A method for determining the oceanic heat flux by measuring the temperatures and thickness of sea ice is described. The results obtained using this method and the data collected during the fall of 1988 in the eastern Arctic are presented. Values of the oceanic heat flux ranging from 0 to 37 W m−2 were estimated from observations taken in the region north-east of Fram Strait. The oceanic heat flux in this region varied in both time and space.


2001 ◽  
Vol 33 ◽  
pp. 577-584 ◽  
Author(s):  
Xingren Wu ◽  
W. F. Budd ◽  
A. P. Worby ◽  
Ian Allison

AbstractA coupled atmosphere-sea-ice model is used to study the sensitivity of the Antarctic sea-ice distribution to oceanic heat flux (OHF). Remote sensing of sea ice from microwave radiometers provides data on ice extent and ice concentration. The ice-thickness data used are from ship-based observations. Our simulations suggest that OHF values of 0−5 W m−2 will cause sea ice to be too thick in the model. A value of 20−25 Wm−2 throughout the year causes sea ice to be too thin in the model. The model results indicate that a seasonally varying OHF is required to match the modelled thickness with observations. Values of 5−30 Wm with an annual mean of 10−15 Wm−2, give a reasonable distribution of sea-ice thickness. This agrees with the limited observations of OHF available for the Antarctic. The model results also indicate that the OHF should be varied spatially. When a seasonally and spatially variable OHF is applied to the coupled atmosphere-sea-ice model a still better simulation of the sea-ice distribution is obtained. Our results also suggest that the role of ice advection is very important in the determination of the sea-ice distribution, and it can be quantified by the model.


2006 ◽  
Vol 44 ◽  
pp. 269-274 ◽  
Author(s):  
Takeshi Tamura ◽  
Kay I. Ohshima ◽  
Hiroyuki Enomoto ◽  
Kazutaka Tateyama ◽  
Atsuhiro Muto ◽  
...  

AbstractAntarctic coastal polynyas are major areas of intense ocean–atmosphere heat and moisture flux, and associated high Sea-ice production and dense-water formation. Their accurate detection, including an estimate of thin ice thickness, is therefore very important. In this paper, we apply a technique originally developed in the Arctic to an estimation of Sea-ice thickness using Us National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data and meteorological data in the Vincennes Bay polynya off Wilkes Land, East Antarctica. The method is based upon the heat-flux calculation using Sea-ice Surface temperature estimates from the Satellite thermal-infrared data combined with global objective analysis (European Centre for Medium-Range Weather Forecasts (ECMWF)) data. The validity of this method is assessed by comparing results with independent ice-surface temperature and ice-thickness data obtained during an Australian-led research cruise to the region in 2003. In thin-ice (polynya) regions, ice thicknesses estimated by the heat-flux calculation using AVHRR and ECMWF data Show reasonable agreement with those estimated by (a) applying the heat-flux calculation to in Situ radiation thermometer and meteorological data and (b) in Situ observations. The Standard deviation of the difference between the AVHRR-derived and in Situ data is ∽0.02 m. Comparison of the AVHRR ice-thickness retrievals with coincident Satellite passive-microwave polarization ratio data confirms the potential of the latter as a means of deriving maps of thin Sea-ice thickness on the wider Scale, uninterrupted by darkness and cloud cover.


2021 ◽  
Vol 14 (8) ◽  
pp. 4891-4908
Author(s):  
Xiaoxu Shi ◽  
Dirk Notz ◽  
Jiping Liu ◽  
Hu Yang ◽  
Gerrit Lohmann

Abstract. We investigate the impact of three different parameterizations of ice–ocean heat exchange on modeled sea ice thickness, sea ice concentration, and water masses. These three parameterizations are (1) an ice bath assumption with the ocean temperature fixed at the freezing temperature; (2) a two-equation turbulent heat flux parameterization with ice–ocean heat exchange depending linearly on the temperature difference between the underlying ocean and the ice–ocean interface, whose temperature is kept at the freezing point of the seawater; and (3) a three-equation turbulent heat flux approach in which the ice–ocean heat flux depends on the temperature difference between the underlying ocean and the ice–ocean interface, whose temperature is calculated based on the local salinity set by the ice ablation rate. Based on model simulations with the stand-alone sea ice model CICE, the ice–ocean model MPIOM, and the climate model COSMOS, we find that compared to the most complex parameterization (3), the approaches (1) and (2) result in thinner Arctic sea ice, cooler water beneath high-concentration ice and warmer water towards the ice edge, and a lower salinity in the Arctic Ocean mixed layer. In particular, parameterization (1) results in the smallest sea ice thickness among the three parameterizations, as in this parameterization all potential heat in the underlying ocean is used for the melting of the sea ice above. For the same reason, the upper ocean layer of the central Arctic is cooler when using parameterization (1) compared to (2) and (3). Finally, in the fully coupled climate model COSMOS, parameterizations (1) and (2) result in a fairly similar oceanic or atmospheric circulation. In contrast, the most realistic parameterization (3) leads to an enhanced Atlantic meridional overturning circulation (AMOC), a more positive North Atlantic Oscillation (NAO) mode and a weakened Aleutian Low.


2015 ◽  
Author(s):  
E. Hansen ◽  
S. Gerland ◽  
G. Spreen ◽  
K. Høyland

2020 ◽  
Vol 61 (82) ◽  
pp. 181-195 ◽  
Author(s):  
S. F. Ackley ◽  
S. Stammerjohn ◽  
T. Maksym ◽  
M. Smith ◽  
J. Cassano ◽  
...  

AbstractThe Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous.


2014 ◽  
Vol 119 (1) ◽  
pp. 537-547 ◽  
Author(s):  
Ruibo Lei ◽  
Na Li ◽  
Petra Heil ◽  
Bin Cheng ◽  
Zhanhai Zhang ◽  
...  

2012 ◽  
Vol 58 (207) ◽  
pp. 38-50 ◽  
Author(s):  
Alexander J. Gough ◽  
Andrew R. Mahoney ◽  
Pat J. Langhorne ◽  
Michael J.M. Williams ◽  
Natalie J. Robinson ◽  
...  

AbstractNear ice shelves around Antarctica the ocean becomes supercooled and has been observed to carry small suspended ice crystals. Our measurements demonstrate that these small crystals are persistently present in the water column beneath the winter fast ice, and when incorporated in sea ice they reduce the mean grain size of the sea-ice cover. By midwinter, larger ice crystals below the ice/water interface are observed to form a porous sub-ice platelet layer with an ice volume fraction of 0.25 ± 0.06. The magnitude and direction of the oceanic heat flux varied between (5 ± 6) Wm-2 (upwards) and (-15 ± 10) Wm-2 (downwards) in May, but by September it settled between (-6 ± 2) and (-11 ± 2) W m-2. The negative values imply that the ocean acts as a heat sink which is responsible for the growth of 12% of the ice thickness between June and September. This oceanic contribution should not be ignored in models of Antarctic sea-ice thickness close to an ice shelf.


Sign in / Sign up

Export Citation Format

Share Document