scholarly journals Thermodynamic properties of thermonuclear fuel in inertial confinement fusion

2016 ◽  
Vol 34 (3) ◽  
pp. 539-544 ◽  
Author(s):  
V. Brandon ◽  
B. Canaud ◽  
M. Temporal ◽  
R. Ramis

AbstractHot-spot path in the thermodynamic space $({\rm \rho} R,T_{\rm i} )_{{\rm hs}} $ is investigated for direct-drive scaled-target family covering a huge interval of kinetic energy on both sides of kinetic threshold for ignition. Different peak implosion velocities and two initial aspect ratios have been considered. It is shown that hot spot follows almost the same path during deceleration up to stagnation whatever the target is. As attended, after stagnation, a clear distinction is done between non-, marginally-, or fully igniting targets. For the last, ionic temperature can reach very high values when the thermonuclear energy becomes very high.

2014 ◽  
Vol 69 (12) ◽  
pp. 645-653
Author(s):  
Mohammad Mahdavi ◽  
Sayed Ebrahim Abedi

AbstractIn this paper, thermonuclear burning of the deuterium-tritium (D/T) plasma of an inertial confinement fusion (ICF) target is studied in the presence of low-Z impurities (lithium, beryllium, and carbon) with arbitrary concentrations. The effect of impurities produced due to the mixing of the thermonuclear fuel with the material of the structural elements of the target during its compression on the process of target burning is studied. Also, the effect of impurity concentration on the plasma ignition parameters such as ignition temperature, confinement parameter ρR, and ignition energy are discussed. The models are constructed for an isobaric and an isochoric plasma for the case in which the burning is initiated in the central heated region of the target and then propagated into the surrounding relatively cold fuel. In ICF spherical implosions of the D/T fuel, the ignition parameters as ignition temperature and parameter ρR in the hot spot are approximately 7 - 10 keV and 0.2 - 0.4 g cm-2 respectively, and these values are increased by the presence of impurities.


2021 ◽  
Vol 28 (3) ◽  
pp. 032713
Author(s):  
Dongguo Kang ◽  
Huasen Zhang ◽  
Shiyang Zou ◽  
Wudi Zheng ◽  
Shaoping Zhu ◽  
...  

2003 ◽  
Vol 10 (5) ◽  
pp. 1906-1918 ◽  
Author(s):  
V. N. Goncharov ◽  
J. P. Knauer ◽  
P. W. McKenty ◽  
P. B. Radha ◽  
T. C. Sangster ◽  
...  

2008 ◽  
Vol 100 (18) ◽  
Author(s):  
S. X. Hu ◽  
V. A. Smalyuk ◽  
V. N. Goncharov ◽  
J. P. Knauer ◽  
P. B. Radha ◽  
...  

1990 ◽  
Vol 8 (1-2) ◽  
pp. 3-17 ◽  
Author(s):  
C. Yamanaka

Inertial confinement fusion (ICF) has made great progress. In fact several significant scientific firsts have been achieved in the last year. These developments have presented the ICF community with an opportunity to embark on a new phase in ICF research. The key issues of laser fusion are to attain a high absorption of laser light in a plasma, to prevent preheating of fuel during the compression, and to achieve highly efficient implosion by uniform compression of fuel due to the homogeneous deposition of laser energy on the pellet surface. Direct drive and indirect drive have been investigated. The progress in both schemes is remarkable. The neutron yield by the stagnation free compression of the LHART target has attained 1013 which corresponds to a pellet gain of 1/500. The plastic shell target has reached a fuel density as large as 600 times the liquid density which is measured by the Si activation method as well as the D knockon method. A cryogenic foam target is now under investigation.


2013 ◽  
Vol 25 (12) ◽  
pp. 3123-3126
Author(s):  
滕建 Teng Jian ◽  
谷渝秋 Gu Yuqiu ◽  
朱斌 Zhu Bin ◽  
谭放 Tan Fang ◽  
田超 Tian Chao ◽  
...  

2013 ◽  
Vol 111 (4) ◽  
Author(s):  
S. P. Regan ◽  
R. Epstein ◽  
B. A. Hammel ◽  
L. J. Suter ◽  
H. A. Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document