ignition temperature
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 117)

H-INDEX

27
(FIVE YEARS 5)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122978
Author(s):  
Fethi Khaled ◽  
Tamour Javed ◽  
Aamir Farooq ◽  
Jihad Badra

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 447
Author(s):  
Qiang Chen ◽  
Mingming Mao ◽  
Min Gao ◽  
Yongqi Liu ◽  
Junrui Shi ◽  
...  

The catalytic combustion has the advantage of lower auto-ignition temperature and helps to expand the combustible limit of lean premixed gas. However, the intake needs to be preheated to certain temperature commonly through an independent heat exchanger. Similar to the principles of non-catalytic RTO combustion, this paper presents a similar approach whereby the combustion chamber is replaced by a catalytic combustion bed. A new catalytic reactor integrated with a heat recuperator is designed to enhance the heat recirculation effect. Using a two-dimensional computational fluid dynamics model, the performance of the reactor is studied. The reaction performances of the traditional and compact reactors are compared and analyzed. Under the same conditions, the compact reactor has better reaction performance and heat recirculation effect, which can effectively decrease the ignition temperature of feed gas. The influences of the inlet velocity, the inlet temperature, the methane concentration, and the thermal conductivity of porous media on the reaction performance of integrated catalytic reactor are studied. The results show that the inlet velocity, inlet temperature, methane concentration, and thermal conductivity of porous media materials have important effects on the reactor performance and heat recirculation effect, and the thermal conductivity of porous media materials has the most obvious influence. Moreover, the reaction performance of multiunit integrated catalytic reactor is studied. The results show that the regenerative effect of multiunit integrated catalytic reactor is further enhanced. This paper is of great significance to the recycling of low calorific value gas energy and relieving energy stress in the future.


2022 ◽  
Vol 12 (2) ◽  
pp. 548
Author(s):  
Eva Mračková ◽  
Jarmila Schmidtová ◽  
Iveta Marková ◽  
Jana Jaďuďová ◽  
Ivana Tureková ◽  
...  

The issue of the formation of wood dust particles in the work environment is still an actual topic in terms of its impact on employee health and the risk of fire or explosion in a woodworking operation. This article deals with the characteristics of spruce dust (Picea abies Karst. (L.)), which was taken from several types of wood technology. Experimental samples of spruce dust were taken from four types of sawing technologies, including grinding, briquetting and from the suction device container. The physical parameters of the samples taken were monitored and the particle size analysis was determined. The granulometric composition of the samples is significantly different. The sample of spruce wood dust from sawing has the most numerous fraction (250 µm), while the sample from grinding has the most numerous fraction 63–250 µm (87%).The aim of the paper was to monitor the minimum ignition temperature of the settled spruce dust layer and to look for a significant dependence of the minimum ignition temperature and ignition time on the type of spruce dust sample. A significant dependence was not confirmed. Significant moisture dependence of the samples was confirmed; the highest humidity was observed in the container, the lowest in sawing.


Fuels ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 31-43
Author(s):  
Thomas Ruh ◽  
Richard Buchinger ◽  
Lorenz Lindenthal ◽  
Florian Schrenk ◽  
Christoph Rameshan

Catalytic tests to assess the performance of mixed perovskite-type oxides (La0.9Ca0.1FeO3-δ, La0.6Ca0.4FeO3-δ, Nd0.9Ca0.1FeO3-δ, Nd0.6Ca0.4FeO3-δ, Nd0.6Ca0.4Fe0.9Co0.1O3-δ, Nd0.6Ca0.4Fe0.97Ni0.03O3-δ, and LSF) with respect to CO oxidation are presented as well as characterization of the materials by XRD and SEM. Perovskites are a highly versatile class of materials due to their flexible composition and their ability to incorporate dopants easily. CO oxidation is a widely used “probe reaction” for heterogeneous catalysts. In this study, it is demonstrated how tuning the composition of the catalyst material (choice of A-site cation, A-site and B-site doping) greatly influences the activity. Changing the A-site cation to Nd3+ or increasing the concentration of Ca2+ as A-site dopant improves the performance of the catalyst. Additional B-site doping (e.g., Co) affects the performance as well—in the case of Co-doping by shifting ignition temperature to lower temperatures. Thus, perovskites offer an interesting approach to intelligent catalyst design and tuning the specific properties towards desired applications.


2022 ◽  
Vol 905 ◽  
pp. 263-268
Author(s):  
Ya Lun Wang ◽  
Yu Chen ◽  
Yun Fei Liu

Aiming at the thermal safety issues between the insensitive energetic plasticizer and propellant components, NG/BTTN and insensitive energetic plasticizer BuNENA plasticized propellant was compared by DSC test and cook-off numerical simulation, with the thermal safety property evaluated. The decomposition activation energy Ea and self-ignition temperature Tb of BuNENA plasticized propellant was lower than that of NG/BTTN plasticized propellant. Two kinds of propellant responded in the central area during slow cook-off simulation while in the near shell area during medium cook-off simulation. During fast cook-off simulation, depending on the different thickness of insulator, propellant responded at the area near shell or the area near the caps. The response temperature of two propellants in cook-off simulation agreed with decomposition and self-ignition temperature by DSC, and the decomposition of plasticizer could trigger the response. In cook-off simulation, BuNENA plasticized propellant showed a lower response temperature with a smaller high temperature area before response, resulting a milder response and better thermal safety than NG/BTTN plasticized propellant.


2022 ◽  
Vol 354 ◽  
pp. 00012
Author(s):  
Maria Prodan ◽  
Andrei Szollosi-Moța ◽  
Vasilica Irina Nălboc ◽  
Niculina Sonia Șuvar ◽  
Adrian Jurca

Spontaneous combustion is a phenomenon that results from the heating of combustible organic powders by slow oxidation and which occurs through the air passage (created by an air depression) through the mass of dust. The oxidation phenomenon of combustible powders represents their reaction with atmospheric oxygen resulting in products of carbon dioxide, carbon oxide, water and other gases whose content depends on the temperature at which the oxidation takes place. The self-ignition of combustible dusts depends on their chemical composition, the properties of component substances, on the particle size and geometry of the material mass and, last but not least, on the temperature of the environment. Due to global worries of sustainability in construction engineering the trend is to use ecofriendly organic waste to various purposes as in construction materials. The challenge is that by using this kind of materials one should ensure the safety related to the process of such organic materials which are known to have combustible properties. The purpose of this work is to present the self-ignition behavior of combustible dusts such as sunflower and wood by means of drying tests under constant temperature conditions.


2021 ◽  
Vol 932 ◽  
Author(s):  
Qianghui Xu ◽  
Xiaoye Dai ◽  
Junyu Yang ◽  
Zhiying Liu ◽  
Lin Shi

Non-isothermal reactive transport in complicated porous media is diverse in nature and industrial applications. There are challenges in the modelling of multiple physicochemical processes in multiscale pore structures with various length scales ranging from nanometres to micrometres. This study focuses on coke combustion during in situ crude oil combustion techniques. A micro-continuum model was developed to perform an image-based simulation of coke combustion through a multiscale porous medium. The simulation coupled weakly compressible gas flow, species transport, conjugate heat transfer, heterogeneous coke oxidation kinetics and structural evolution. The unresolved nanoporous coke region was treated as a continuum, for which the random pore model, permeability model and species diffusivity model were integrated as sub-grid models to account for the sub-resolution reactive surface area, Darcy flow and Knudsen diffusion, respectively. A Pe–Da diagram was provided to present five characteristic combustion regimes covering the ignition temperature and air flux in realistic field operations and laboratory measurements. The present model proved to achieve more accurate predictions of the feasible ignition temperature than previous models. Compared with the air flux of $\phi \sim O\textrm{(1) s}{\textrm{m}^\textrm{3}}(\textrm{air})\;{({\textrm{m}^\textrm{2}}\ \textrm{h})^{ - 1}}$ in the field, the increasing air flux in the laboratory transformed the combustion regime from diffusion-limited to convection-limited, which led to an overpredicted burning temperature. Reactive fingering combustion was analysed to understand the potential risks in some experimental measurements. The findings provide a better understanding of coke combustion and can help engineers design sustainable combustion methods. The developed image-based model allows other types of multiscale and nonlinear reactive transport to be simulated.


2021 ◽  
Vol 4 (12) ◽  
pp. 1002-1011
Author(s):  
Xueyi Mei ◽  
Xingbao Zhu ◽  
Yexin Zhang ◽  
Zhaoliang Zhang ◽  
Zhicheng Zhong ◽  
...  

Tribologia ◽  
2021 ◽  
Vol 296 (2) ◽  
pp. 7-20
Author(s):  
Marcin Frycz ◽  
Mateusz Labuda

This paper presents the results of an analysis of the influence of the addition of various types of carbon nanoparticles on selected essential physical and operational properties of lubricating oils. Two selected oils, i.e. the mineral base oil without additives and the typical marine lubricating circulating oil Marinol RG 1240, were modified with the addition of shungite nanoparticles, graphite nanotubes, and C60 fullerenes. The mass fraction of modifiers was 0.2% wt for each of the additives. As part of the experimental tests, measurements were made of the impact of the above-mentioned modifiers on the change in the value of the ignition temperature of oils, the effect on the changes in the value of the dynamic viscosity coefficient in the aspect of changes of temperature and shear rate, as well as the impact on the changes in the friction coefficient and the size of the wear size scar. These tests were carried out on an EraFlash automatic apparatus for determining ignition temperature using the closed cup method, with a Haake Mars III research rheometer, and a T-02U tribometer with a four-ball head.


Sign in / Sign up

Export Citation Format

Share Document