scholarly journals Electron acceleration by ponderomotive force in magnetized quantum plasma

2017 ◽  
Vol 35 (2) ◽  
pp. 252-258 ◽  
Author(s):  
A.K. Singh ◽  
S. Chandra

AbstractThe possibilities of electron acceleration by ponderomotive force of a circularly polarized laser pulse in magnetized quantum plasma have been explored. The basic mechanism involves acceleration of electron by the axial gradient in the ponderomotive potential of the laser. The quantum effects have been taken into account for a high-density plasma. The ponderomotive force of the laser is resonantly enhanced when Doppler up-shifted laser frequency equals the cyclotron frequency.

1984 ◽  
Vol 32 (3) ◽  
pp. 487-493 ◽  
Author(s):  
M. L. Sawley

The nonlinear propagation of a circularly polarized, electromagnetic wave in a collisional, infinite, magnetized plasma is considered. The presence of collisions leads to spatial variation in the amplitude of the wave field which gives rise to a time-independent ponderomotive force. The ponderomotive potential for a left (right) circularly polarized wave attains a maximum at the ion (electron) cyclotron frequency. In the vicinity of the cyclotron frequency it is shown to be always positive. A decrease in both the particle density and the real and imaginary parts of the complex wavenumber is shown to result from the effect of the ponderomotive force.


2012 ◽  
Vol 30 (4) ◽  
pp. 659-664 ◽  
Author(s):  
Anamika Sharma ◽  
V.K. Tripathi

AbstractThe self-focusing of an intense right circularly polarized Gaussian laser pulse in magnetized plasma is studied. The ions are taken to be immobile and relativistic mass effect is incorporated in both the plasma frequency (ωp) and the electron cyclotron frequency (ωc) while determining the ponderomotive force on electrons. The ponderomotive force causes electron expulsion when the effective electron cyclotron frequency is below twice the laser frequency. The nonlinear plasma dielectric function due to ponderomotive and relativistic effects is derived, which is then employed in beam-width parameter equation to study the self-focusing of the laser beam. From this, we estimate the importance of relativistic self-focusing in comparison with ponderomotive self-focusing at moderate laser intensities. The beam width parameter decreases with magnetic field indicating better self-focusing. When the laser intensity is very high, the relativistic gamma factor can be modeled as ${\rm \gamma} = 0.8\left({{{{\rm \omega} _c } / {\rm \omega} }} \right)+ \sqrt {1 + a_0^2 }$γ=0.8(ωc/ω)+1+a02 where ω and a0 are the laser frequency and the normalized laser field strength, respectively. The cyclotron effects on the self-focusing of laser pulse are reduced at high field strengths.


2012 ◽  
Vol 30 (2) ◽  
pp. 267-273 ◽  
Author(s):  
P. Kumar ◽  
C. Tewari

AbstractA detailed study of Wakefield excitation in very dense quantum plasma is presented. Electric and magnetic Wakefields have been obtained for a particular profile of the laser pulse, using perturbative technique involving orders of the incident laser beam. The Wakefields can trap electrons and accelerate them to extremely high energies. It is observed that the quantum effects significantly change the classical nature of the Wakefield. The axial and radial forces acting on a test electron due to the Wakefields have been evaluated.


2014 ◽  
Vol 32 (2) ◽  
pp. 285-293 ◽  
Author(s):  
M. Shirozhan ◽  
M. Moshkelgosha ◽  
R. Sadighi-Bonabi

AbstractThe effects of the polarized incident laser pulse on the electrons of the plasma surface and on the reflected pulse in the relativistic laser-plasma interaction is investigated. Based on the relativistic oscillating mirror and totally reflecting oscillating mirror (TROM) regimes, the interaction of the intense polarized laser pulses with over-dense plasma is considered. Based on the effect of ponderomotive force on the characteristic of generated electron nano-bunches, considerable increasing in the localization and charges of nano-bunches are realized. It is found that the circularly polarized laser pulse have Ne/Ncr of 1500 which is almost two and seven times more than the amounts for P-polarized and S-polarized, respectively.


2009 ◽  
Vol 76 (1) ◽  
pp. 25-28 ◽  
Author(s):  
P. K. SHUKLA ◽  
NITIN SHUKLA ◽  
L. STENFLO

AbstractWe show that the non-stationary ponderomotive force of a large-amplitude electromagnetic wave in a very dense quantum plasma with streaming degenerate electrons can spontaneously create d.c. magnetic fields. The present result can account for the seed magnetic fields in compact astrophysical objects and in the next-generation intense laser–solid density plasma interaction experiments.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850225 ◽  
Author(s):  
Mehdi Abedi-Varaki

In this paper, we study the electron acceleration by a circularly polarized electromagnetic wave propagating through plasma in the presence of a periodic and an axial guide magnetic field. A numerical calculation in MATLAB software was developed by employing the fourth-order Runge–Kutta method for studying the electron energy and electron trajectory in plasma medium. The equations governing the electron momentum and energy which describe electron acceleration by a circularly polarized laser pulse have been obtained. It is shown that by choosing an appropriate wiggler field frequency at short distances, the electron retains an adequate amount of energy. In addition, it is found that due to the simultaneous existence of the wiggler field and field of laser pulse and their combined effects, the electron in the direction of the laser pulse propagating, turns around and subsequently, the electron transverse momentum increases and as a result the electron escapes from the laser pulse near the laser pulse peak. Furthermore, it is seen that by increasing the laser intensity, the electron energy decreases and by decreasing to an appropriate value while employing a wiggler magnetic field, a higher peak of energy is gained.


Sign in / Sign up

Export Citation Format

Share Document