incident laser pulse
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 2127 (1) ◽  
pp. 012057
Author(s):  
P S Martyanov ◽  
P V Zinin ◽  
S A Titov

Abstract In this report a novel method for measuring the elastic properties of thin 10 nm films is described. The method is based on the use of a nanosecond laser for generation acoustic waves in solids. Absorption of the incident laser pulse energy and the associated temperature gradients induces a rapidly changing strain field. This strain field, in turn, radiates energy as elastic (ultrasonic) waves. At low pulse power, this is an entirely thermo elastic process resulting in no damage to the sample. The acoustic echo arriving at the probed surface causes both the displacement of the surface (a few nanometres) and the strain in the subsurface material, which might be detected through the variation of the optical reflectivity of the material, i.e. through the acousto-optic effect.


2021 ◽  
Vol 27 (7) ◽  
pp. 1-12
Author(s):  
Malak Mohammed Fahad ◽  
Munaf S. Majeed ◽  
Emad Talib Hashim

One of the most important techniques for preparing nanoparticle material is Pulsed Laser Ablation in Liquid technique (PLAL). Carbon nanoparticles were prepared using PLAL, and the carbon target was immersed in Ultrapure water (UPW) then irradiated with Q-switched Nd:YAG laser (1064 nm) and six ns pulse duration. In this process, an Nd:YAG laser beam was focused near the carbon surface. Nanoparticles synthesized using laser irradiation were studied by observing the effects of varying incident laser pulse intensities (250, 500, 750, 1000) mJ on the particle size (20.52, 36.97, 48.72, and 61.53) nm, respectively. In addition, nanoparticles were characterized by means of the Atomic Force Microscopy (AFM) test, pH easurement, and an Electrical Conductivity (EC) test of the nano solution. The smallest particle size was produced with (250) mJ laser pulse energy.                                                                    


2014 ◽  
Vol 32 (2) ◽  
pp. 285-293 ◽  
Author(s):  
M. Shirozhan ◽  
M. Moshkelgosha ◽  
R. Sadighi-Bonabi

AbstractThe effects of the polarized incident laser pulse on the electrons of the plasma surface and on the reflected pulse in the relativistic laser-plasma interaction is investigated. Based on the relativistic oscillating mirror and totally reflecting oscillating mirror (TROM) regimes, the interaction of the intense polarized laser pulses with over-dense plasma is considered. Based on the effect of ponderomotive force on the characteristic of generated electron nano-bunches, considerable increasing in the localization and charges of nano-bunches are realized. It is found that the circularly polarized laser pulse have Ne/Ncr of 1500 which is almost two and seven times more than the amounts for P-polarized and S-polarized, respectively.


2014 ◽  
Vol 32 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Vineeta Jain ◽  
K.P. Maheshwari ◽  
N.K. Jaiman ◽  
Harish Malav

AbstractAnalytical and numerical investigation of the reflection and transmission of a counter-propagating relativistically strong laser pulse from a relativistically flying dense plasma double-sided mirror is studied. We assume that the incident laser pulse is short, so that we can neglect the slow ion dynamics and consider the electron motion only. Numerical results of the amplitudes of the reflected/transmitted electric fields from a uniformly moving mirror, accelerated mirror, and oscillating mirror are obtained. Fourier spectrum of the reflected intensity from the moving mirror shows that the intensity decreases with increase in the frequency. The reflected pulse has an up-shifted frequency and increased intensity. It is seen that the first few cycles of the reflected radiation exhibit presence of high harmonics, while the later cycles are compressed together with harmonics in comparison with the earlier cycles. The variation of the reflection coefficient for a uniformly moving mirror as a function of the thin foil plasma-density parameter is numerically studied.


2013 ◽  
Vol 38 (21) ◽  
pp. 4339 ◽  
Author(s):  
Wei Shi ◽  
Huai-meng Gui ◽  
Lin Zhang ◽  
Meng-xia Li ◽  
Cheng Ma ◽  
...  

2013 ◽  
Vol 31 (1) ◽  
pp. 171-175 ◽  
Author(s):  
X.M. Fan ◽  
Z.W. Lu ◽  
D.Y. Lin ◽  
F. Yang ◽  
Y. Liu ◽  
...  

AbstractThe effect of smoothing by spectral dispersion (SSD) on stimulated rotational Raman scattering (SRRS) in air has been investigated both numerically and theoretically. The suppression effect of SSD on SRRS process is verified and it is demonstrated and proposed that the suppression effect is attributed to two aspects: the decreasing of the laser fluence modulation degree and the reducing of Stokes gain coefficient caused by the temporal and spatial variation of the phase of the incident laser pulse. The simulation results show that the SRRS threshold distance can be lengthened by choosing appropriate SSD parameters.


2011 ◽  
Vol 8 (3) ◽  
pp. 756-765
Author(s):  
Baghdad Science Journal

A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.


2010 ◽  
Vol 28 (1) ◽  
pp. 215-221 ◽  
Author(s):  
S. Steinke ◽  
A. Henig ◽  
M. Schnürer ◽  
T. Sokollik ◽  
P.V. Nickles ◽  
...  

AbstractExperiments on ion acceleration by irradiation of ultra-thin diamond-like carbon (DLC) foils, with thicknesses well below the skin depth, irradiated with laser pulses of ultra-high contrast and linear polarization, are presented. A maximum energy of 13 MeV for protons and 71 MeV for carbon ions is observed with a conversion efficiency of ~10%. Two-dimensional particle-in-cell (PIC) simulations reveal that the increase in ion energies can be attributed to a dominantly collective rather than thermal motion of the foil electrons, when the target becomes transparent for the incident laser pulse.


2008 ◽  
Vol 26 (4) ◽  
pp. 591-596 ◽  
Author(s):  
P. McKenna ◽  
D.C. Carroll ◽  
O. Lundh ◽  
F. Nürnberg ◽  
K. Markey ◽  
...  

AbstractThe properties of beams of high energy protons accelerated during ultraintense, picosecond laser-irradiation of thin foil targets are investigated as a function of preplasma expansion at the target front surface. Significant enhancement in the maximum proton energy and laser-to-proton energy conversion efficiency is observed at optimum preplasma density gradients, due to self-focusing of the incident laser pulse. For very long preplasma expansion, the propagating laser pulse is observed to filament, resulting in highly uniform proton beams, but with reduced flux and maximum energy.


Sign in / Sign up

Export Citation Format

Share Document