scholarly journals Weakly relativistic self-focusing of Gaussian laser beam in magnetized cold quantum plasma

2017 ◽  
Vol 35 (4) ◽  
pp. 699-705 ◽  
Author(s):  
M. Aggarwal ◽  
V. Goyal ◽  
Richa ◽  
H. Kumar ◽  
T.S. Gill

AbstractIn the present paper, we have studied self-focusing of Gaussian laser beam in weakly relativistic magnetized cold quantum plasma. When interparticle distance is comparable to the de Broglie wavelength of charged particles, we cannot neglect the quantum contribution of plasma constituents. Therefore, propagation characteristics are studied by taking in to account quantum contribution in the presence of static magnetic field applied along the beam propagation. Our results show that the magnetic field plays a key role in achieving additional focusing, it modifies the quiver motion of electrons by adding cyclotron frequency to the natural frequency of oscillating electrons during laser beam propagation. The results are compared with those of weakly relativistic quantum plasma and weakly relativistic magnetized plasma. The self-focusing is found to be more pronounced when axial magnetic field is increased in the present model. We have setup the non-linear differential equation for the evolution of beam-width parameter by well-known paraxial ray approximation and solved it with the help of computational technique.

2018 ◽  
Vol 36 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Richa ◽  
Munish Aggarwal ◽  
Harish Kumar ◽  
Ranju Mahajan ◽  
Navdeep Singh Arora ◽  
...  

AbstractIn the present paper, we have investigated self-focusing of the quadruple Gaussian laser beam in underdense cold quantum plasma. The non-linearity chosen is associated with the relativistic mass effect that arises due to quiver motion of electron and electron density perturbation caused by ponderomotive force. The non-linearity modifies the plasma frequency in the dielectric function and hence the refractive index of the medium. The focusing/defocusing of the quadruple laser depends on the refractive index of the medium. We have set up non-linear differential equation that controls the beam width parameter by using well-known paraxial ray approximation and Wentzel–Krammers–Brillouin approximation. The effect of intensity parameter and electron temperature is observed on laser beam self-focusing in the presence of cold quantum plasma. From the results, it is revealed that electron temperature and the initial intensity of the laser beam control the profile dynamics of the laser beam.


2015 ◽  
Vol 33 (4) ◽  
pp. 741-747 ◽  
Author(s):  
Ram Kishor Singh ◽  
R. P. Sharma

AbstractThis paper presents a theoretical model for efficient terahertz (THz) radiation by self-focused amplitude-modulated laser beam in preformed ripple density plasma. The density of plasma is modified due to ponderomotive nonlinearity which arises because of the nonuniform spatial profile of the laser beam in magnetized plasma and leads to the self-focusing of the laser beam. The rate of self-focusing depends on the intensity of the amplitude-modulated beam as well as on the externally applied magnetic field strength. The electron also experiences time-dependent ponderomotive force by the laser beam at modulated frequency. A nonlinear current at THz frequency arises on account of the coupling between the ripple density plasma and nonlinear oscillatory velocity of the electrons. The yield of the generated THz radiation enhances with enhancement in self-focusing of the laser beam and applied magnetic field.


2016 ◽  
Vol 34 (3) ◽  
pp. 426-432 ◽  
Author(s):  
H. Kumar ◽  
M. Aggarwal ◽  
Richa ◽  
T.S. Gill

AbstractIn the present paper, we have investigated self-focusing of Gaussian laser beam in relativistic ponderomotive (RP) cold quantum plasma. When de Broglie wavelength of charged particles is greater than or equal to the inter particle distance or equivalently the temperature is less than or equal to the Fermi temperature, quantum nature of the plasma constituents cannot be ignored. In this context, we have reported self-focusing on account of nonlinear dielectric contribution of RP plasma by taking into consideration the impact of quantum effects. We have setup the nonlinear differential equation for the beam-width parameter by paraxial ray and Wentzel Kramers Brillouin approximation and solved it numerically by the Runge Kutta Fourth order method. Our results show that additional self-focusing is achieved in case of RP cold quantum plasma than relativistic cold quantum plasma and classical relativistic case. The pinching effect offered by quantum plasma and the combined effect of relativistic and ponderomotive nonlinearity greatly enhances laser propagation up to 20 Rayleigh lengths.


2019 ◽  
Vol 37 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Munish Aggarwal ◽  
Vimmy Goyal ◽  
Richa Kashyap ◽  
Harish Kumar ◽  
Tarsem Singh Gill

AbstractSelf-focusing of Gaussian laser beam has been investigated in quantum plasma under the effect of applied axial magnetic field. The nonlinear differential equation has been derived for studying the variations in the beam-width parameter. The effect of initial plasma electron temperature and the axial magnetic field on self-focusing and normalized intensity are studied. Our investigation reveals that normalized intensity increases to tenfolds where quantum effects are dominant. The normalized intensity further increases to twelvefolds on increasing the magnetic field.


1999 ◽  
Vol 62 (4) ◽  
pp. 389-396 ◽  
Author(s):  
M. V. ASTHANA ◽  
A. GIULIETTI ◽  
DINESH VARSHNEY ◽  
M. S. SODHA

This paper presents an analysis of the relativistic self-focusing of a rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising owing to relativistic variation of mass, and following the WKB and paraxial-ray approximations, the phenomenon of self-focusing of rippled laser beams is studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids82, 1221 (1990)] have shown that a small ripple on the axis of the main beam grows very rapidly with distance of propagation as compared with the self-focusing of the main beam. Based on this analogy, we have analysed relativistic self-focusing of rippled beams in plasmas. The relativistic intensities with saturation effects of nonlinearity allow the nonlinear refractive index in the paraxial regime to have a slower radial dependence, and thus the ripple extracts relatively less energy from its neighbourhood.


2021 ◽  
Author(s):  
Gunjan Purohit ◽  
Bineet Gaur ◽  
Pradeep Kothiyal ◽  
Amita Raizada

Abstract This paper presents a scheme for the generation of terahertz (THz) radiation by self-focusing of a cosh-Gaussian laser beam in the magnetized and rippled density plasma, when relativistic nonlinearity is operative. The strong coupling between self-focused laser beam and pre-existing density ripple produces nonlinear current that originates THz radiation. THz radiation is produced by the interaction of the cosh-Gaussian laser beam with electron plasma wave under the appropriate phase matching conditions. Expressions for the beamwidth parameter of cosh-Gaussian laser beam and the electric vector of the THz radiation have been obtained using higher-order paraxial theory and solved numerically. The self-focusing of the cosh-Gaussian laser beam and its effect on the generated THz amplitude have been studied for specific laser and plasma parameters. Numerical study has been performed on various values of the decentered parameter, incident laser intensity, magnetic field, and relative density. The results have also been compared with the paraxial region as well as the Gaussian profile of laser beam. Numerical results suggest that the self-focusing of the cosh-Gaussian laser beam and the amplitude of THz radiation increase in the extended paraxial region compared to the paraxial region. It is also observed that the focusing of the cosh-Gaussian laser beam in the magnetized plasma and the amplitude of the THz radiation increases at higher values of the decentered parameter.


2016 ◽  
Vol 34 (4) ◽  
pp. 621-630 ◽  
Author(s):  
B. Gaur ◽  
P. Rawat ◽  
G. Purohit

AbstractThis work presents an investigation of the self-focusing of a high-power laser beam having cosh Gaussian intensity profile in a collissionless plasma under weak relativistic-ponderomotove (RP) and only relativistic regimes and its effect on the excitation of electron plasma wave (EPW), and particle acceleration process. Nonlinear differential equations have been set up for the beam width and intensity of cosh Gaussian laser beam (CGLB) and EPW using the Wentzel-Kramers-Brillouin and paraxial-ray approximations as well as fluid equations. The numerical results are presented for different values of decentered parameter ‘b’ and intensity parameter ‘a’ of CGLB. Strong self-focusing is observed in RP regime as compared with only relativistic nonlinearity. Numerical analysis shows that these parameters play crucial role on the self-focusing of the CGLB and the excitation of EPW. It is also found that the intensity/amplitude of EPW increases with b and a. Further, nonlinear coupling between the CGLB and EPW leads to the acceleration of electrons. The intensity of EPW and energy gain by electrons is significantly affected by including the ponderomotive nonlinearity. The energy of the accelerated electrons is increased by increasing the value of ‘b’. The results are presented for typical laser and plasma parameters.


2009 ◽  
Vol 27 (4) ◽  
pp. 587-593 ◽  
Author(s):  
A. Singh ◽  
M. Aggarwal ◽  
T.S. Gill

AbstractIn the present paper, we have investigated the growth of a Gaussian perturbation superimposed on a Gaussian laser beam. The nonlinearity we have considered is of relativistic type. We have setup the nonlinear differential equations for beam width parameter of the main beam, growth and width of the laser spike by using the WKB and paraxial ray approximation. These are coupled ordinary differential equations and therefore these are simultaneously solved numerically using the Runge Kutta method. It has been observed from the analysis that self-focusing/defocusing of the main beam and the spike determine the growth dynamic of the spike.


Sign in / Sign up

Export Citation Format

Share Document