scholarly journals Nonlinear propagation of ion acoustic waves in quantum plasma in the presence of an ion beam

2019 ◽  
Vol 37 (4) ◽  
pp. 370-380 ◽  
Author(s):  
Indrani Paul ◽  
Arkojyothi Chatterjee ◽  
Sailendra Nath Paul

AbstractNonlinear propagation of ion acoustic waves has been studied in unmagnetized quantum (degenerate) plasma in the presence of an ion beam using the one-dimensional quantum hydrodynamic model. The Korteweg–de Vries (K–dV) equation has been derived by using the reductive perturbation technique. The solution of ion acoustic solitary waves is obtained from the K–dV equation. The theoretical results have been analyzed numerically for different values of plasma parameters and the results are presented graphically. It is seen that the formation and structure of solitary waves are significantly affected by the ion beam in quantum plasma. The solitary waves will be compressive or rarefactive depending upon the values of velocity, concentration, and temperature of the ion beam. The critical value of ion beam density for the nonexistence of solitary wave has been numerically estimated, and its variation with velocity and temperature of ion beam has been discussed graphically. The results are new and would be very useful for understanding the beam–plasma interactions and the formation of nonlinear wave structures in dense quantum plasma.

2008 ◽  
Vol 74 (2) ◽  
pp. 197-205 ◽  
Author(s):  
AMAR P. MISRA ◽  
S. SAMANTA ◽  
A. R. CHOWDHURY

AbstractA quantum magnetohydrodynamic model is used to investigate the nonlinear propagation of dust ion-acoustic waves in a three-component quantum plasma composed of electrons, positively charged ions and immobile charged dust grains. Using the standard reductive perturbation technique, a Korteweg–de Vries equation is derived containing the quantum statistical and diffraction effects. There exists a critical value of the non-dimensional parameter H, proportional to the quantum diffraction, beyond which the bright soliton propagation is not possible with positive phase velocity. The effects of obliqueness, charged dust impurity and external magnetic field as well as the quantum mechanical effects are investigated numerically on the profiles of the amplitude and width of the solitary waves.


1990 ◽  
Vol 43 (3) ◽  
pp. 319 ◽  
Author(s):  
GC Das ◽  
Kh lbohanbi Singh

By using the reductive perturbation technique, ion-acoustic waves are studied in a generalised multicomponent plasma. The multiple ions modify drastically the characteristics of the solitary waves. In particular, the negative ions have a critical density at which the nonlinearity of the Korteweg-deVries (K-dV) equation vanishes and the ion-acoustic solitary wave is seen to be described by a modified K-dV (mK-dV) equation. Using higher order nonlinearities, the non-uniform transition of the K-dV equation to the mK-dV equation along with the conservation of the Sagdeev potential is described. Theoretical observations on the existence of the solitary waves, as expected, could be of interest in laboratory plasmas


1989 ◽  
Vol 67 (6) ◽  
pp. 609-613 ◽  
Author(s):  
G. C. Das ◽  
KH. Ibohanbi Singh ◽  
B. Karmakar

Nonlinear ion-acoustic solitary waves are studied in a cylindrically bounded plasma consisting of ions and ion beams, along with multiple-temperature electrons, through the derivation of a Korteweg–deVries equation. The interaction of isothermality on the propagation of radially ingoing ion-acoustic waves in various plasmas exerts a drastic modifying effect on the existence and behaviour of the solitons. The results have been compared extensively with those available to date for planar, as well as spherical, solitons.


2010 ◽  
Vol 77 (1) ◽  
pp. 95-106 ◽  
Author(s):  
S. K. EL-LABANY ◽  
M. SHALABY ◽  
E. F. EL-SHAMY ◽  
M. A. KHALED

AbstractIn the present research paper, the nonlinear propagation of dust ion acoustic solitary waves in a collisional dusty plasma, which consists of negatively charged small dust grains, positively charged ions and isothermal electrons with background neutral particles, is investigated. The low rates compared to the ion oscillation frequency, of the charge-fluctuation dynamics of the dust grains, the ionization, ion-neutral and dust-neutral collisions (i.e. weak dissipations) are considered. Using the reductive perturbation theory, a damped Korteweg-de Vries (DKdV) equation is derived. On the other hand, the dynamics of solitary waves at a critical phase velocity is governed by a damped modified Korteweg-de Vries (DMKdV) equation. The nonlinear properties of dust ion acoustic waves in the presence of weak dissipations in the two cases are discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
R. Jahangir ◽  
S. Ali

The formation of nonlinear ion-acoustic waves is studied in a degenerate magnetoplasma accounting for quantized and trapped electrons. Relying on the reductive perturbation technique, a three-dimensional Zakharov–Kuznetsov (ZK) equation is derived, admitting a solitary wave solution with modified amplitude and width parameters. The stability of the ZK equation is also discussed using the k-expansion method. Subsequently, numerical analyses are carried out for plasma parameters of a dense stellar system involving white dwarf stars. It has been observed that the quantized magnetic field parameter η and degeneracy of electrons (determined by small temperature values T) affect the amplitude and width of the electric potential. The critical point at which the nature of the solitary structure changes from compressive to rarefaction is evaluated. Importantly, the growth rate of the instability associated with a three-dimensional ZK equation depends on the plasma parameters, and higher values of η and T tend to stabilize the solitons in quantized degenerate plasmas. The results of the present study may hold significance to comprehend the properties of wave propagation and instability growth in stellar and laboratory dense plasmas.


Author(s):  
Anne de Bouard

We study the stability of positive radially symmetric solitary waves for a three dimensional generalisation of the Korteweg de Vries equation, which describes nonlinear ion-acoustic waves in a magnetised plasma, and for a generalisation in dimension two of the Benjamin–Bona–Mahony equation.


1998 ◽  
Vol 51 (1) ◽  
pp. 113 ◽  
Author(s):  
K. K. Mondal ◽  
S. N. Paul ◽  
A. Roy Chowdhury

A pseudopotential approach is used to analyse the propagation of ion-acoustic waves in a plasma bounded by a cylindrical domain. The effect of the finite geometry is displayed both analytically and numerically. The phase velocity of the wave is determined and its variation is studied with respect to the plasma parameters. It is observed that the pseudopotential shows a wide variation of shape due to the imposition of a finite boundary condition. It is shown that if the other parameters are kept within a certain range of values, then the trapping of particles is favoured when the presence of the boundary is taken into account.


1985 ◽  
Vol 28 (6) ◽  
pp. 2016 ◽  
Author(s):  
Santwana Raychaudhuri ◽  
Karl E. Lonngren

Sign in / Sign up

Export Citation Format

Share Document