scholarly journals Soliton Characteristics at the Critical Density of Negative Ions in Ion-beam Plasmas

1990 ◽  
Vol 43 (3) ◽  
pp. 319 ◽  
Author(s):  
GC Das ◽  
Kh lbohanbi Singh

By using the reductive perturbation technique, ion-acoustic waves are studied in a generalised multicomponent plasma. The multiple ions modify drastically the characteristics of the solitary waves. In particular, the negative ions have a critical density at which the nonlinearity of the Korteweg-deVries (K-dV) equation vanishes and the ion-acoustic solitary wave is seen to be described by a modified K-dV (mK-dV) equation. Using higher order nonlinearities, the non-uniform transition of the K-dV equation to the mK-dV equation along with the conservation of the Sagdeev potential is described. Theoretical observations on the existence of the solitary waves, as expected, could be of interest in laboratory plasmas

1991 ◽  
Vol 44 (5) ◽  
pp. 523 ◽  
Author(s):  
GC Das ◽  
Kh Ibohanbi Singh

Propagation of nonlinear ion-acoustic waves in generalised multicomponent plasmas bounded by cylindrical and spherical geometries is investigated. At the critical density of negative ions where the nonlinearity of the Korteweg-deVries (K-dV) equation vanishes, the ion-acoustic solitary wave is described by a modified K-dV (mK-dV) equation. It is also emphasised that near the critical density neither the K-dV nor mK-dV equation is sufficient to describe fully the ion-acoustic waves and thus there is a need to derive a further mK-dV (fmK-dV) equation in the vicinity of this critical density. Furthermore, the amplitude variations of the K-dV and mK-dV solitons depending on the limitations of geometrical effects are also discussed, emphasising that the results could be of interest for diagnosing the soliton properties of laboratory plasmas.


2019 ◽  
Vol 37 (4) ◽  
pp. 370-380 ◽  
Author(s):  
Indrani Paul ◽  
Arkojyothi Chatterjee ◽  
Sailendra Nath Paul

AbstractNonlinear propagation of ion acoustic waves has been studied in unmagnetized quantum (degenerate) plasma in the presence of an ion beam using the one-dimensional quantum hydrodynamic model. The Korteweg–de Vries (K–dV) equation has been derived by using the reductive perturbation technique. The solution of ion acoustic solitary waves is obtained from the K–dV equation. The theoretical results have been analyzed numerically for different values of plasma parameters and the results are presented graphically. It is seen that the formation and structure of solitary waves are significantly affected by the ion beam in quantum plasma. The solitary waves will be compressive or rarefactive depending upon the values of velocity, concentration, and temperature of the ion beam. The critical value of ion beam density for the nonexistence of solitary wave has been numerically estimated, and its variation with velocity and temperature of ion beam has been discussed graphically. The results are new and would be very useful for understanding the beam–plasma interactions and the formation of nonlinear wave structures in dense quantum plasma.


2000 ◽  
Vol 63 (4) ◽  
pp. 343-353 ◽  
Author(s):  
S. K. EL-LABANY ◽  
S. A. EL-WARRAKI ◽  
W. M. MOSLEM

Cylindrical ion-acoustic solitons are investigated in a warm plasma with negative ions and multiple-temperature electrons through the derivation of a cylindrical Korteweg–de Vries equation using a reductive perturbation theory. The results are compared with those for the corresponding planar solitons.


1989 ◽  
Vol 67 (6) ◽  
pp. 609-613 ◽  
Author(s):  
G. C. Das ◽  
KH. Ibohanbi Singh ◽  
B. Karmakar

Nonlinear ion-acoustic solitary waves are studied in a cylindrically bounded plasma consisting of ions and ion beams, along with multiple-temperature electrons, through the derivation of a Korteweg–deVries equation. The interaction of isothermality on the propagation of radially ingoing ion-acoustic waves in various plasmas exerts a drastic modifying effect on the existence and behaviour of the solitons. The results have been compared extensively with those available to date for planar, as well as spherical, solitons.


Author(s):  
Anne de Bouard

We study the stability of positive radially symmetric solitary waves for a three dimensional generalisation of the Korteweg de Vries equation, which describes nonlinear ion-acoustic waves in a magnetised plasma, and for a generalisation in dimension two of the Benjamin–Bona–Mahony equation.


2012 ◽  
Vol 79 (2) ◽  
pp. 163-168 ◽  
Author(s):  
U. M. ABDELSALAM ◽  
M. M. SELIM

AbstractThe hydrodynamic equations of positive and negative ions, degenerate electrons, and the Poisson equation are used along with the reductive perturbation method to derive the three-dimensional Zakharov–Kuznetsov (ZK) equation. The G′/G-expansion method is used to obtain a new class of solutions for the ZK equation. At certain condition, these solutions can describe the solitary waves that propagate in our plasma. The effects of negative ion concentrations, the positive/negative ion cyclotron frequency, as well as positive-to-negative ion mass ratio on solitary pulses are examined. Finally, the present study might be helpful to understand the propagation of nonlinear ion-acoustic solitary waves in a dense plasma, such as in astrophysical objects.


Sign in / Sign up

Export Citation Format

Share Document