quantum mechanical effects
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 32)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
pp. 1-33
Author(s):  
Shahid Ali

The basic properties of classical and quantum plasmas are discussed. Quantum plasmas behave differently due to high densities and low temperatures at nanometer scale in contrast to classical ones which are characterized by low densities and high temperatures. A literature survey is made to investigate the plasma phenomenon with quantum mechanical effects. Classical and quantum viewpoints are also presented to understand the free electron gas in metals. In particular, the excitation of stable plasmon wakefield is studied due to a short electron pulse propagating in axial direction of nanowire. The latter contains degenerate electrons and classical static ions. By using the Trivelpiece-Gould configuration and Fourier transform techniques, a general dispersion is obtained for the electrostatic plasmons and analyzed numerically. Nevertheless, an evolution equation for the wakefield is derived and carried out the stability analysis. In a gold nanowire, the amplitudes of wakefield become significantly modified by the variation of quantum diffraction, quantum exchange-correlations and mode quantization in the radial direction. The present findings may prove useful for investigating new radiation sources in the extreme-ultraviolet range.


2021 ◽  
Author(s):  
F. Shoucair

The salient properties of charge flow (or current) along the MOSFET’s inversion layer are shown to be consilient with a river’s flow in a gravitational potential field, insofar as both are fundamentally governed by energy conservation principles, and their laminar and turbulent conditions determined by friction losses at shallow depths. We establish analytically that the low-field, "universal" effective mobility, μ<sub>eff </sub><b>, </b>long reported to vary as ~(E*<sub>T</sub>)<sup>-1/3</sup> for transversal fields below 0.5 MV/cm, is manifestation and consequence of both energy and momentum conservation under laminar flow conditions and quantum mechanical effects, in which case the inversion layer’s mean thickness also varies as ~(E*<sub>T</sub>)<sup>-1/3</sup> up to a maximum value E*<sub>T</sub> ≈ 0.35 MV/cm at 300K, determined only by interface "terrain" amplitude and fundamental constants.


2021 ◽  
Author(s):  
F. Shoucair

The salient properties of charge flow (or current) along the MOSFET’s inversion layer are shown to be consilient with a river’s flow in a gravitational potential field, insofar as both are fundamentally governed by energy conservation principles, and their laminar and turbulent conditions determined by friction losses at shallow depths. We establish analytically that the low-field, "universal" effective mobility, μ<sub>eff </sub><b>, </b>long reported to vary as ~(E*<sub>T</sub>)<sup>-1/3</sup> for transversal fields below 0.5 MV/cm, is manifestation and consequence of both energy and momentum conservation under laminar flow conditions and quantum mechanical effects, in which case the inversion layer’s mean thickness also varies as ~(E*<sub>T</sub>)<sup>-1/3</sup> up to a maximum value E*<sub>T</sub> ≈ 0.35 MV/cm at 300K, determined only by interface "terrain" amplitude and fundamental constants.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Denis Mamaluy ◽  
Juan P. Mendez ◽  
Xujiao Gao ◽  
Shashank Misra

AbstractThin, high-density layers of dopants in semiconductors, known as δ-layer systems, have recently attracted attention as a platform for exploration of the future quantum and classical computing when patterned in plane with atomic precision. However, there are many aspects of the conductive properties of these systems that are still unknown. Here we present an open-system quantum transport treatment to investigate the local density of electron states and the conductive properties of the δ-layer systems. A successful application of this treatment to phosphorous δ-layer in silicon both explains the origin of recently-observed shallow sub-bands and reproduces the sheet resistance values measured by different experimental groups. Further analysis reveals two main quantum-mechanical effects: 1) the existence of spatially distinct layers of free electrons with different average energies; 2) significant dependence of sheet resistance on the δ-layer thickness for a fixed sheet charge density.


Author(s):  
Matthew J. Lake

The scale of quantum mechanical effects in matter is set by Planck’s constant, \hbarℏ. This represents the quantisation scale for material objects. In this article, we present a simple argument why the quantisation scale for space, and hence for gravity, may not be equal to \hbarℏ. Indeed, assuming a single quantisation scale for both matter and geometry leads to the `worst prediction in physics’, namely, the huge difference between the observed and predicted vacuum energies. Conversely, assuming a different quantum of action for geometry, \beta \ll \hbarβ≪ℏ, allows us to recover the observed density of the Universe. Thus, by measuring its present-day expansion, we may in principle determine, empirically, the scale at which the geometric degrees of freedom should be quantised.


2021 ◽  
pp. 111331
Author(s):  
De-hua Wang ◽  
Jie Zhang ◽  
Zhao-peng Sun ◽  
Shu-fang Zhang ◽  
Gang Zhao

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Alexander Karlberg ◽  
Gavin P. Salam ◽  
Ludovic Scyboz ◽  
Rob Verheyen

AbstractAs part of a programme to develop parton showers with controlled logarithmic accuracy, we consider the question of collinear spin correlations within the PanScales family of parton showers. We adapt the well-known Collins–Knowles spin-correlation algorithm to PanScales antenna and dipole showers, using an approach with similarities to that taken by Richardson and Webster. To study the impact of spin correlations, we develop Lund-declustering based observables that are sensitive to spin-correlation effects both within and between jets and extend the MicroJets collinear single-logarithmic resummation code to include spin correlations. Together with a 3-point energy correlation observable proposed recently by Chen, Moult and Zhu, this provides a powerful set of constraints for validating the logarithmic accuracy of our shower results. The new observables and their resummation further open the pathway to phenomenological studies of these important quantum mechanical effects.


Author(s):  
Salman Sajad Wani ◽  
Dylan Sutherland ◽  
Behnam Pourhassan ◽  
Mir Faizal ◽  
Hrishikesh Patel

Using T-duality, we will argue that a zero point length exists in the low-energy effective field theory of string theory on compactified extra dimensions. Furthermore, if we neglect all the oscillator modes, this zero point length would modify low quantum mechanical systems. As this zero length is fixed geometrically, it is important to analyze how it modifies purely quantum mechanical effects. Thus, we will analyze its effects on quantum erasers, because they are based on quantum effects like entanglement. It will be observed that the behavior of these quantum erasers gets modified by this zero point length. As the zero point length is fixed by the radius of compactification, we argue that these results demonstrate a deeper connection between geometry and quantum effects.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 680
Author(s):  
Cristina Medina-Bailon ◽  
Tapas Dutta ◽  
Ali Rezaei ◽  
Daniel Nagy ◽  
Fikru Adamu-Lema ◽  
...  

The modeling of nano-electronic devices is a cost-effective approach for optimizing the semiconductor device performance and for guiding the fabrication technology. In this paper, we present the capabilities of the new flexible multi-scale nano TCAD simulation software called Nano-Electronic Simulation Software (NESS). NESS is designed to study the charge transport in contemporary and novel ultra-scaled semiconductor devices. In order to simulate the charge transport in such ultra-scaled devices with complex architectures and design, we have developed numerous simulation modules based on various simulation approaches. Currently, NESS contains a drift-diffusion, Kubo–Greenwood, and non-equilibrium Green’s function (NEGF) modules. All modules are numerical solvers which are implemented in the C++ programming language, and all of them are linked and solved self-consistently with the Poisson equation. Here, we have deployed some of those modules to showcase the capabilities of NESS to simulate advanced nano-scale semiconductor devices. The devices simulated in this paper are chosen to represent the current state-of-the-art and future technologies where quantum mechanical effects play an important role. Our examples include ultra-scaled nanowire transistors, tunnel transistors, resonant tunneling diodes, and negative capacitance transistors. Our results show that NESS is a robust, fast, and reliable simulation platform which can accurately predict and describe the underlying physics in novel ultra-scaled electronic devices.


Sign in / Sign up

Export Citation Format

Share Document