A local-based method for manipulators path planning, using sub-goals resulting from a local graph

Robotica ◽  
2006 ◽  
Vol 24 (5) ◽  
pp. 539-548 ◽  
Author(s):  
S. Zeghloul ◽  
C. Helguera ◽  
G. Ramirez

This paper addresses the path planning problem for manipulators. The problem of path planning in robotics can be defined as follows: To find a collision free trajectory from an initial configuration to a goal configuration. In this paper a collision-free path planner for manipulators, based on a local constraints method, is proposed. In this approach the task is described by a minimization problem under geometric constraints. The anti-collision constraints are mapped as linear constraints in the configuration space and they are not included in the function to minimize. Also, the task to achieve is defined as a combination of two displacements. The first displacement brings the robot towards to the goal configuration, while the second one allows the robot to avoid the local minima. This formulation solves many of classical problems found in local methods. However, when the robot acts in some heavy cluttered environments, a zig-zaging phenomenon could appear. To solve this situation, a graph based on the local environment of the robot is constructed. On this graph, an A* search is performed, in order to find a dead-lock free position that can be used as a sub-goal in the optimization process. This path-planner has been implemented within SMAR, a CAD-Robotics system developed at our laboratory. Tests in heavy cluttered environments were successfully performed.

Robotica ◽  
2001 ◽  
Vol 19 (5) ◽  
pp. 543-555 ◽  
Author(s):  
Gabriel Ramírez ◽  
Saïd Zeghloul

This paper presents a collision-free path planner for mobile robot navigation in an unknown environment subject to nonholonomic constraints. This planner is well adapted for use with embarked sensors, because it uses only the distance information between the robot and the obstacles. The collision-free path-planning is based on a new representation of the obstacles in the velocity space. The obstacles in the influence zone are mapped as linear constraints into the velocity space of the robot, forming a convex subset that represents the velocities that the robot can use without collision with the objects. The planner is composed by two modules, termed “reaching the goal” and “boundary following”. The major advantages of this method are the very short calculation time and a continuous stable behavior of the velocities. The results presented demonstrate the capabilities of the proposed method for solving the collision-free path-planning problem.


Author(s):  
Letian Lin ◽  
J. Jim Zhu

The path planning problem for autonomous car parking has been widely studied. However, it is challenging to design a path planner that can cope with parking in tight environment for all common parking scenarios. The important practical concerns in design, including low computational costs and little human’s knowledge and intervention, make the problem even more difficult. In this work, a path planner is developed using a novel four-phase algorithm. By using some switching control laws to drive two virtual cars to a target line, a forward path and a reverse path are obtained. Then the two paths are connected along the target line. As illustrated by the simulation results, the proposed path planning algorithm is fast, highly autonomous, sufficiently general and can be used in tight environment.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 175 ◽  
Author(s):  
Yongtao Li ◽  
Yu Wu ◽  
Xichao Su ◽  
Jingyu Song

This paper studies the path planning problem for aircraft fleet taxiing on the flight deck of carriers, which is of great significance for improving the safety and efficiency level of launching. As there are various defects of manual command in the flight deck operation of carriers, the establishment of an automatic path planner for aircraft fleets is imperative. The requirements of launching, the particularities of the flight deck environment, the way of launch, and the work mode of catapult were analyzed. On this basis, a mathematical model was established which contains the constraints of maneuverability and the work mode of catapults; the ground motion and collision detection of aircraft are also taken into account. In the design of path planning algorithm, path tracking was combined with path planning, and the strategy of rolling optimization was applied to get the actual taxi path of each aircraft. Taking the Nimitz-class aircraft carrier as an example, the taxi paths of aircraft fleet launching was planned with the proposed method. This research can guarantee that the aircraft fleet complete launching missions safely with reasonable taxi paths.


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


1998 ◽  
Vol 29 (8) ◽  
pp. 807-868 ◽  
Author(s):  
ALBERT Y. ZOMAYA MATT R. WRIGHT TAR

Sign in / Sign up

Export Citation Format

Share Document