Microfossil analyses and radiocarbon dating of depositional sequences related to Holocene sea-level change in the Forth valley, Scotland

Author(s):  
Marie Robinson

ABSTRACTMicrofossil (pollen and diatom) evidence is presented from sites in the Forth valley, south-central Scotland, where alternating organic and estuarine minerogenic deposits record the influence of the changing Holocene sea level. Radiocarbon dating confirms the age of the Main and Low Buried Beaches, and of the Main Postglacial Transgression, in different parts of the Forth valley. Radiocarbon dates on shells from beds in the carse sediment and a Mesolithic shell midden near Grangemouth relate to the falling sea level in the 4th and 5th millennia BP. Sea-level curves are constructed for the western and eastern Forth valley.

1993 ◽  
Vol 40 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Hajime Kayanne ◽  
Teruaki Ishii ◽  
Eiji Matsumoto ◽  
Nobuyuki Yonekura

AbstractHolocene emergent reefs and notches are well distributed on Rota and Guam. Relative sea-level changes at these islands are reconstructed based on geomorphological observations and borings on present and emergent reefs, together with 54 radiocarbon dates. Sea level rose gradually to a maximum of 1.8 m between 6000 and 4200 yr B.P. and reached its highest level by 4200 yr B.P. on both islands. After 3200 yr B.P. abrupt uplift caused emergence of the reef. By subtracting the tectonic effect, we obtained the sea-level change in the Marianas: sea level reached its present level by 4200 yr B.P. and has remained almost stable since then. Reconstructed late Holocene sea-level change in the Mariana Islands provides constraints on geophysical models of sea-level variations.


1996 ◽  
Author(s):  
J J Clague ◽  
P T Bobrowsky ◽  
J -P Builbault ◽  
R W Mathewes

2004 ◽  
Vol 164 (3-4) ◽  
pp. 237-249 ◽  
Author(s):  
Kazuaki Hori ◽  
Susumu Tanabe ◽  
Yoshiki Saito ◽  
Shigeko Haruyama ◽  
Viet Nguyen ◽  
...  

2007 ◽  
Vol 44 (10) ◽  
pp. 1453-1465 ◽  
Author(s):  
Julia F Daly ◽  
Daniel F Belknap ◽  
Joseph T Kelley ◽  
Trevor Bell

Differential sea-level change in formerly glaciated areas is predicted owing to variability in extent and timing of glacial coverage. Newfoundland is situated close to the margin of the former Laurentide ice sheet, and the orientation of the shoreline affords the opportunity to investigate variable rates and magnitudes of sea-level change. Analysis of salt-marsh records at four sites around the island yields late Holocene sea-level trends. These trends indicate differential sea-level change in recent millennia. A north–south geographic trend reflects submergence in the south, very slow sea-level rise in the northeast, and a recent transition from falling to rising sea-level at the base of the Northern Peninsula. This variability is best explained as a continued isostatic response to deglaciation.


2020 ◽  
Vol 95 (sp1) ◽  
pp. 659
Author(s):  
Mateusz C. Strzelecki ◽  
Filip Duszyński ◽  
Sebastian Tyszkowski ◽  
Łukasz Zbucki ◽  
Marek Kasprzak

Sign in / Sign up

Export Citation Format

Share Document