Granites and rhyolites from the northwestern U.S.A.: temporal variation in magmatic processes and relations to tectonic setting

Author(s):  
Marc D. Norman ◽  
William P. Leeman ◽  
Stanley A. Mertzman

ABSTRACTCretaceous and Cainozoic granites and rhyolites in the northwestern U.S.A. provide a record of silicic magmatism related to diverse tectonic settings and large-scale variations in crustal structure. The Late Cretaceous Idaho Batholith is a tonalitic to granitic Cordilleran batholith that was produced during plate convergence. Rocks of the batholith tend to be sodic (Na2O > K2O), with fractionated HREE, negligible Eu anomalies, and high Sr contents, suggesting their generation from relatively mafic sources at a depth sufficient to stabilise garnet. In contrast, Neogene rhyolites of the Snake River Plain, which erupted in an extensional environment, are potassic (K2O > Na2O), with unfractionated HREE patterns, negative Eu anomalies, and low Sr contents, suggesting a shallower, more feldspathic source with abundant plagioclase. Eocene age volcanic and plutonic rocks have compositions transi- tional between those of the Cretaceous batholith and the Neogene rhyolites. These data are consistent with a progressively shallowing locus of silicic magma generation as the tectonic regime changed from convergence to extension.

2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.


2019 ◽  
Vol 60 (10) ◽  
pp. 1881-1902 ◽  
Author(s):  
Juliana Troch ◽  
Ben S Ellis ◽  
Chris Harris ◽  
Peter Ulmer ◽  
Anne-Sophie Bouvier ◽  
...  

Abstract Quantifying the relative contributions of crustal versus mantle-derived melt is important for understanding how silicic magmas are generated, stored, and interact with country rock in trans-crustal magmatic systems. Low-δ18O rhyolitic ignimbrites and lavas erupted during Miocene volcanic activity in the central Snake River Plain (14–6 Ma) have been inferred to be the result of large-scale partial or bulk melting of pre-existing hydrothermally altered lithologies of the Idaho batholith and Challis volcanic field. In this study, we assess the melting behaviour of heterogeneously altered source materials via partial melting experiments over a range of run times at conditions of 750–1000°C and 1–2 kbar, and apply our observations to current models for the petrogenesis of low-δ18O rhyolites along the Yellowstone hotspot track. Partial melt produced in the experiments inherits the bulk oxygen isotope composition from hydrothermally altered peraluminous source materials independent of the melt fraction, excluding the possibility for preferential, disequilibrium melting of 18O-depleted mineral phases during incipient melting. We propose a new model to explain the generation of low-δ18O rhyolites in the central Snake River Plain, whereby mantle-derived magmas assimilate ∼30–40% of crustal material that was hydrothermally altered at high temperatures in two stages: (1) a preceding episode of hydrothermal alteration during intrusion of Eocene plutons (‘pre-existing source’); (2) syn-magmatic hydrothermal alteration within a nested caldera complex. During assimilation, dilution of peraluminous crustal lithologies with mantle-derived magma maintains the metaluminous character of rhyolites erupted along the Yellowstone hotspot track. These results link previous models favouring melting of either pre-existing or syn-magmatically altered lithologies for the generation of low-δ18O rhyolites along the Yellowstone hotspot track and provide direct experimental observation of the chemical processes occurring during assimilation processes in magmatic environments.


2020 ◽  
Author(s):  
Ben Ellis ◽  
Mark Schmitz

<p><span><span>Despite the largest explosive eruptions posing significant potential hazards, the recurrence rate of these so called ‘super-eruptions’ remains poorly constrained. The younger portion of the Yellowstone-Snake River Plain province is well-known for large-scale explosive volcanism; however, the older history within the Snake River Plain remains poorly-known and partially obscured by later basaltic volcanism. To address this, we characterised the mineral cargo of four widely spaced rhyolitic ignimbrites found at the margins of the Snake River Plain that reveal a strong compositional similarity in bulk geochemistry, major crystal phases (e.g. pyroxene and ilmenite), and radiogenic isotopes. To test whether these four compositionally similar units may have had a common origin we used a tandem in-situ and isotope dilution method for U/Pb geochronology of zircon crystals. The youngest populations of zircons from all four samples are equivalent in age, and together define a pooled weighted mean <sup>238</sup>U/<sup>206</sup>Pb age of 11.030 ± 0.006 (MSWD = 1.44, n=24). These results reveal an event with a conservatively estimated erupted volume ~1,470 km<sup>3</sup>, of similar magnitude to the largest Yellowstone eruptions. Numerous widely dispersed tephra deposits found across the western portions of North America with geochemical affinities to the Snake River Plain province hint at the existence of other such voluminous ignimbrites. The improved ability to correlate deposits of an individual eruption shown by this and other recent studies implies that ‘super’ eruptive events are more common than previously thought. </span></span></p>


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 672
Author(s):  
Anette Regelous ◽  
Lars Scharfenberg ◽  
Helga De Wall

The origin and evolution of granites remain a matter of debate and several approaches have been made to distinguish between different granite types. Overall, granite classification schemes based on element concentrations and ratios, tectonic settings or the source rocks (I-, A-, S-type) are widely used, but so far, no systematic large-scale study on Th/U ratio variations in granites based on their source or tectonic setting has been carried out, even though these elements show very similar behavior during melting and subsequent processes. We therefore present a compiled study, demonstrating an easy approach to differentiate between S-, A- and I-type granites using Th and U concentrations and ratios measured with a portable gamma ray spectrometer. Th and U concentrations from 472 measurements in S- and I-type granites from the Variscan West-Bohemian Massif, Germany, and 78 measurements from Neoproterozoic A-type Malani granites, India, are evaluated. Our compendium shows significant differences in the average Th/U ratios of A-, I- and S-type granites and thus gives information about the source rock and can be used as an easy classification scheme. Considering all data from the studied A-, I- and S-type granites, Th/U ratios increase with rising Th concentrations. A-type granites have the highest Th/U ratios and high Th concentrations, followed by I-type granites. Th/U ratios in S- to I-type granites are lower than in A-type and I-type granites, but higher than in S-type granites. The variation of Th/U ratios in all three types of granite cannot be explained by fractional crystallization of monazite, zircon and other Th and U bearing minerals alone, but are mainly due to source heterogeneities and uranium mobilization processes.


Sign in / Sign up

Export Citation Format

Share Document