A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies

2006 ◽  
Vol 21 (2) ◽  
pp. 97-126 ◽  
Author(s):  
JOST SCHATZMANN ◽  
KARL WEILHAMMER ◽  
MATT STUTTLE ◽  
STEVE YOUNG

Within the broad field of spoken dialogue systems, the application of machine-learning approaches to dialogue management strategy design is a rapidly growing research area. The main motivation is the hope of building systems that learn through trial-and-error interaction what constitutes a good dialogue strategy. Training of such systems could in theory be done using human users or using corpora of human–computer dialogue, but in practice the typically vast space of possible dialogue states and strategies cannot be explored without the use of automatic user simulation tools.This requirement for training statistical dialogue models has created an interesting new application area for predictive statistical user modelling and a variety of different techniques for simulating user behaviour have been presented in the literature ranging from simple Markov models to Bayesian networks. The development of reliable user simulation tools is critical to further progress on automatic dialogue management design but it holds many challenges, some of which have been encountered in other areas of current research on statistical user modelling, such as the problem of ‘concept drift’, the problem of combining content-based and collaboration-based modelling techniques, and user model evaluation. The latter topic is of particular interest, because simulation-based learning is currently one of the few applications of statistical user modelling that employs both direct ‘accuracy-based’ and indirect ‘utility-based’ evaluation techniques.In this paper, we briefly summarize the role of the dialogue manager in a spoken dialogue system, give a short introduction to reinforcement-learning of dialogue management strategies and review the literature on user modelling for simulation-based strategy learning. We further describe recent work on user model evaluation and discuss some of the current research issues in simulation-based learning from a user modelling perspective.

2002 ◽  
Vol 16 ◽  
pp. 105-133 ◽  
Author(s):  
S. Singh ◽  
D. Litman ◽  
M. Kearns ◽  
M. Walker

Designing the dialogue policy of a spoken dialogue system involves many nontrivial choices. This paper presents a reinforcement learning approach for automatically optimizing a dialogue policy, which addresses the technical challenges in applying reinforcement learning to a working dialogue system with human users. We report on the design, construction and empirical evaluation of NJFun, an experimental spoken dialogue system that provides users with access to information about fun things to do in New Jersey. Our results show that by optimizing its performance via reinforcement learning, NJFun measurably improves system performance.


Author(s):  
Zhiwei (Tony) Qin ◽  
Xiaocheng Tang ◽  
Yan Jiao ◽  
Fan Zhang ◽  
Chenxi Wang ◽  
...  

In this demo, we will present a simulation-based human-computer interaction of deep reinforcement learning in action on order dispatching and driver repositioning for ride-sharing.  Specifically, we will demonstrate through several specially designed domains how we use deep reinforcement learning to train agents (drivers) to have longer optimization horizon and to cooperate to achieve higher objective values collectively. 


2004 ◽  
Vol 19 (1) ◽  
pp. 61-88 ◽  
Author(s):  
MARTIN E. MÜLLER

Machine learning seems to offer the solution to many problems in user modelling. However, one tends to run into similar problems each time one tries to apply out-of-the-box solutions to machine learning. This article closely relates the user modelling problem to the machine learning problem. It explicates some inherent dilemmas that are likely to be overlooked when applying machine learning algorithms in user modelling. Some examples illustrate how specific approaches deliver satisfying results and discuss underlying assumptions on the domain or how learned hypotheses relate to the requirements on the user model. Finally, some new or underestimated approaches offering promising perspectives in combined systems are discussed. The article concludes with a tentative ‘‘checklist” that one might like to consider when planning to apply machine learning to user modelling techniques.


2021 ◽  
pp. 405-413
Author(s):  
Günther Schuh ◽  
Andreas Gützlaff ◽  
Matthias Schmidhuber ◽  
Jan Maetschke ◽  
Max Barkhausen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document