scholarly journals Adaptivity in high-performance embedded systems: a reactive control model for reliable and flexible design

2014 ◽  
Vol 29 (4) ◽  
pp. 433-451
Author(s):  
Huafeng Yu ◽  
Abdoulaye Gamatié ◽  
Éric Rutten ◽  
Jean-Luc Dekeyser

AbstractSystem adaptivity is increasingly demanded in high-performance embedded systems, particularly in multimedia system-on-chip (SoC), owing to growing quality-of-service requirements. This paper presents a reactive control model that has been introduced in Gaspard, our framework dedicated to SoC hardware/software co-design. This model aims at expressing adaptivity as well as reconfigurability in systems performing data-intensive computations. It is generic enough to be used for description in the different parts of an embedded system, for example, specification of how different data-intensive algorithms can be chosen according to some computation modes at the functional level; and expression of how hardware components can be selected via the usage of a library of intellectual properties according to execution performances. The transformation of this model toward synchronous languages is also presented, in order to allow an automatic code generation usable for formal verification, based on techniques such as model checking and controller synthesis, as illustrated in the paper. This work, based on Model-Driven Engineering and the standard UML MARTE profile, has been implemented in Gaspard.

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1450
Author(s):  
Xiang Wang ◽  
Zhun Zhang ◽  
Qiang Hao ◽  
Dongdong Xu ◽  
Jiqing Wang ◽  
...  

The hardware security of embedded systems is raising more and more concerns in numerous safety-critical applications, such as in the automotive, aerospace, avionic, and railway systems. Embedded systems are gaining popularity in these safety-sensitive sectors with high performance, low power, and great reliability, which are ideal control platforms for executing instruction operation and data processing. However, modern embedded systems are still exposing many potential hardware vulnerabilities to malicious attacks, including software-level and hardware-level attacks; these can cause program execution failure and confidential data leakage. For this reason, this paper presents a novel embedded system by integrating a hardware-assisted security monitoring unit (SMU), for achieving a reinforced system-on-chip (SoC) on ensuring program execution and data processing security. This architecture design was implemented and evaluated on a Xilinx Virtex-5 FPGA development board. Based on the evaluation of the SMU hardware implementation in terms of performance overhead, security capability, and resource consumption, the experimental results indicate that the SMU does not lead to a significant speed degradation to processor while executing different benchmarks, and its average performance overhead reduces to 2.18% on typical 8-KB I/D-Caches. Security capability evaluation confirms the monitoring effectiveness of SMU against both instruction and data tampering attacks. Meanwhile, the SoC satisfies a good balance between high-security and resource overhead.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


2021 ◽  
Author(s):  
Stephen Chui

Network-On-Chip (NoC) has surpassed the traditional bus based on-chip communication in offering better performance for data transfers among many processing, peripheral and other cores of high performance embedded systems. Adaptive routing provides an effective way of efficient on-chip communication among NoC cores. The message routing efficiency can further improve the performance of NoC based embedded systems on a chip. Congestion awareness has been applied to adaptive routing for achieving better data throughput and latency. This thesis presents a novel approach of analyzing congestion to improve NoC throughput by improving packet allocation in NoC routers. The routers would have the knowledge of the traffic conditions around themselves by utilizing the congestion information. We employ header flits to store the congestion information that does not require any additional communication links between the routers. By prioritizing data packets that are likely to suffer the worst congestion would improve overall NoC data transfer latency.


Author(s):  
Angelo Gargantini ◽  
Elvinia Riccobene ◽  
Patrizia Scandurra

In the embedded system and System-on-Chip (SoC) design area, the increasing technological complexity coupled with requests for more performance and shorter time to market have caused a high interest for new methods, languages and tools capable of operating at higher levels of abstraction than the conventional system level. This chapter presents a model-driven and tool-assisted development process of SoCs, which is based on high-level UML design of system components, guarantees SystemC code generation from graphical models, and allows validation of system behaviors on formal models automatically derived from UML models. An environment for system design and analysis is also presented, which is based on a UML profile for SystemC and the Abstract State Machine formal method.


Author(s):  
Paul Dietz ◽  
Aswin van den Berg ◽  
Kevin Marth ◽  
Thomas Weigert ◽  
Frank Weil

Model-driven engineering proposes to develop software systems by first creating an executable model of the system design and then transforming this model into an implementation. This chapter discusses how to automatically transform such design models into product implementations for industrial-strength systems. It provides insights, practical considerations, and lessons learned when developing code generators for applications that must conform to the constraints imposed by real-world, high-performance systems. This deeper understanding of the relevant issues will enable developers of automatic code generation systems to build transformation tools that can be deployed in industrial applications with stringent performance requirements.


Author(s):  
Abdelhamid Hariche ◽  
Mostefa Belarbi ◽  
Abdallah Chouarfia ◽  
Abdelkader Chaib

The need for high performance, available and reliable embedded systems has made computing systems increasingly complex. Formal methods have the ability to produce critical systems for large industrial projects, and this by creating an original mathematical model that can be formally refined in levels until the final refinement which contains enough of details for an implementation. This work is a first step of VHDL code generation process, it represents how to elaborate formally an embedded system using Abstract data type in a form of theories (NoC, WNoC, colored graph, VHDL) and how to ensure in systematic way all the details and complexity of this system using operators of refinement (Create, Rename, Restrict, Enrich)that are recently proposed for the Event-B method. All the theories are deployed, discharged and used in Event-B models to represent and enhance the performance of this self-organization reliability solution for the wireless sensors network of NoC-based system. This paper summerize the fruit of using new proposed approach for the Event-B formal method that persist the NoC-based ditributed system instead of consuming more than 70% of realization time with any analytic method.


Sign in / Sign up

Export Citation Format

Share Document