scholarly journals DEPENDENCE, DISPERSIVENESS, AND MULTIVARIATE HAZARD RATE ORDERING

2005 ◽  
Vol 19 (4) ◽  
pp. 427-446 ◽  
Author(s):  
Baha-Eldin Khaledi ◽  
Subhash Kochar

To compare two multivariate random vectors of the same dimension, we define a new stochastic order called upper orthant dispersive ordering and study its properties. We study its relationship with positive dependence and multivariate hazard rate ordering as defined by Hu, Khaledi, and Shaked (Journal of Multivariate Analysis, 2002). It is shown that if two random vectors have a common copula and if their marginal distributions are ordered according to dispersive ordering in the same direction, then the two random vectors are ordered according to this new upper orthant dispersive ordering. Also, it is shown that the marginal distributions of two upper orthant dispersive ordered random vectors are also dispersive ordered. Examples and applications are given.

1993 ◽  
Vol 25 (02) ◽  
pp. 477-482 ◽  
Author(s):  
Emad-Eldin A. A. Aly ◽  
Subhash C. Kochar

Shanthikumar and Yao (1991) introduced some new stochastic order relations to compare the components of a bivariate random vector (X 1, X 2). As they point out in their paper, even if according to their hazard rate (or likelihood ratio) ordering, the marginal distributions may not be ordered accordingly. We introduce some new concepts where the marginal distributions preserve the corresponding stochastic orders. Also a relation between the bivariate scale model and the introduced bivariate hazard rate ordering is established.


1993 ◽  
Vol 25 (2) ◽  
pp. 477-482 ◽  
Author(s):  
Emad-Eldin A. A. Aly ◽  
Subhash C. Kochar

Shanthikumar and Yao (1991) introduced some new stochastic order relations to compare the components of a bivariate random vector (X1, X2). As they point out in their paper, even if according to their hazard rate (or likelihood ratio) ordering, the marginal distributions may not be ordered accordingly. We introduce some new concepts where the marginal distributions preserve the corresponding stochastic orders. Also a relation between the bivariate scale model and the introduced bivariate hazard rate ordering is established.


1991 ◽  
Vol 28 (03) ◽  
pp. 613-629 ◽  
Author(s):  
Moshe Shaked ◽  
J. George Shanthikumar

In this paper we introduce and study a dynamic notion of mean residual life (mrl) functions in the context of multivariate reliability theory. Basic properties of these functions are derived and their relationship to the multivariate conditional hazard rate functions is studied. A partial ordering, called the mrl ordering, of non-negative random vectors is introduced and its basic properties are presented. Its relationship to stochastic ordering and to other related orderings (such as hazard rate ordering) is pointed out. Using this ordering it is possible to introduce a weak notion of positive dependence of random lifetimes. Some properties of this positive dependence notion are given. Finally, using the mrl ordering, a dynamic notion of multivariate DMRL (decreasing mean residual life) is introduced and studied. The relationship of this multivariate DMRL notion to other notions of dynamic multivariate aging is highlighted in this paper.


1991 ◽  
Vol 28 (3) ◽  
pp. 613-629 ◽  
Author(s):  
Moshe Shaked ◽  
J. George Shanthikumar

In this paper we introduce and study a dynamic notion of mean residual life (mrl) functions in the context of multivariate reliability theory. Basic properties of these functions are derived and their relationship to the multivariate conditional hazard rate functions is studied.A partial ordering, called the mrl ordering, of non-negative random vectors is introduced and its basic properties are presented. Its relationship to stochastic ordering and to other related orderings (such as hazard rate ordering) is pointed out. Using this ordering it is possible to introduce a weak notion of positive dependence of random lifetimes. Some properties of this positive dependence notion are given.Finally, using the mrl ordering, a dynamic notion of multivariate DMRL (decreasing mean residual life) is introduced and studied. The relationship of this multivariate DMRL notion to other notions of dynamic multivariate aging is highlighted in this paper.


Author(s):  
Bin Lu ◽  
Jiandong Zhang ◽  
Rongfang Yan

Abstract This paper studies the optimal allocation policy of a coherent system with independent heterogeneous components and dependent subsystems, the systems are assumed to consist of two groups of components whose lifetimes follow proportional hazard (PH) or proportional reversed hazard (PRH) models. We investigate the optimal allocation strategy by finding out the number $k$ of components coming from Group A in the up-series system. First, some sufficient conditions are provided in the sense of the usual stochastic order to compare the lifetimes of two-parallel–series systems with dependent subsystems, and we obtain the hazard rate and reversed hazard rate orders when two subsystems have independent lifetimes. Second, similar results are also obtained for two-series–parallel systems under certain conditions. Finally, we generalize the corresponding results to parallel–series and series–parallel systems with multiple subsystems in the viewpoint of the minimal path and the minimal cut sets, respectively. Some numerical examples are presented to illustrate the theoretical findings.


2015 ◽  
Vol 52 (01) ◽  
pp. 102-116 ◽  
Author(s):  
Nuria Torrado ◽  
Subhash C. Kochar

Let X λ1 , X λ2 , …, X λ n be independent Weibull random variables with X λ i ∼ W(α, λ i ), where λ i > 0 for i = 1, …, n. Let X n:n λ denote the lifetime of the parallel system formed from X λ1 , X λ2 , …, X λ n . We investigate the effect of the changes in the scale parameters (λ1, …, λ n ) on the magnitude of X n:n λ according to reverse hazard rate and likelihood ratio orderings.


1993 ◽  
Vol 30 (02) ◽  
pp. 421-428
Author(s):  
Moshe Shaked ◽  
J. George Shanthikumar

Motivated by the need of studying a subset of components, ‘separate' from the other components, we introduce a new definition of ‘marginal distribution'. This is done by fixing the lives of the other components, but without the ‘knowledge' of the components of interest. Formally this is done by minimally repairing the components of no interest up to a predetermined time. Preservation properties of these ‘conditional marginal distributions', with respect to several stochastic orderings, are obtained. Also, inheritance of positive dependence properties, by the conditional marginal distributions, is shown. In addition, the preservations of dynamic multivariate aging properties, by the dynamic conditional marginal distributions, are obtained. The definitions and results are illustrated by a set of examples. Some applications for modelling ‘combinations' of sets of random lifetimes, and for bounding complex sets of random lifetimes, are described.


1987 ◽  
Vol 24 (01) ◽  
pp. 48-61
Author(s):  
Naftali A. Langberg ◽  
David S. Stoffer

Two classes of finite and infinite moving-average sequences of bivariate random vectors are considered. The first class has bivariate exponential marginals while the second class has bivariate geometric marginals. The theory of positive dependence is used to show that in various cases the two classes consist of associated random variables. Association is then applied to establish moment inequalities and to obtain approximations to some joint probabilities of the bivariate processes.


Sign in / Sign up

Export Citation Format

Share Document