scholarly journals AN IDENTIFICATION PROBLEM IN AN URN AND BALL MODEL WITH HEAVY TAILED DISTRIBUTIONS

2009 ◽  
Vol 24 (1) ◽  
pp. 77-97
Author(s):  
Christine Fricker ◽  
Fabrice Guillemin ◽  
Philippe Robert

We consider in this article an urn and ball problem with replacement, where balls are with different colors and are drawn uniformly from a unique urn. The numbers of balls with a given color are independent and identically distributed random variables with a heavy tailed probability distribution—for instance a Pareto or a Weibull distribution. We draw a small fraction p≪1 of the total number of balls. The basic problem addressed in this article is to know to which extent we can infer the total number of colors and the distribution of the number of balls with a given color. By means of Le Cam's inequality and the Chen–Stein method, bounds for the total variation norm between the distribution of the number of balls drawn with a given color and the Poisson distribution with the same mean are obtained. We then show that the distribution of the number of balls drawn with a given color has the same tail as that of the original number of balls. Finally, we establish explicit bounds between the two distributions when each ball is drawn with fixed probability p.

1996 ◽  
Vol 33 (2) ◽  
pp. 340-356 ◽  
Author(s):  
Michael Voit

The distributions of nearest neighbour random walks on hypercubes in continuous time t 0 can be expressed in terms of binomial distributions; their limit behaviour for t, N → ∞ is well-known. We study here these random walks in discrete time and derive explicit bounds for the deviation of their distribution from their counterparts in continuous time with respect to the total variation norm. Our results lead to a recent asymptotic result of Diaconis, Graham and Morrison for the deviation from uniformity for N →∞. Our proofs use Krawtchouk polynomials and a version of the Diaconis–Shahshahani upper bound lemma. We also apply our methods to certain birth-and-death random walks associated with Krawtchouk polynomials.


1996 ◽  
Vol 33 (02) ◽  
pp. 340-356 ◽  
Author(s):  
Michael Voit

The distributions of nearest neighbour random walks on hypercubesin continuous timet0 can be expressed in terms of binomial distributions; their limit behaviour fort, N →∞ is well-known. We study here these random walks in discrete time and derive explicit bounds for the deviation of their distribution from their counterparts in continuous time with respect to the total variation norm. Our results lead to a recent asymptotic result of Diaconis, Graham and Morrison for the deviation from uniformity forN →∞.Our proofs use Krawtchouk polynomials and a version of the Diaconis–Shahshahani upper bound lemma. We also apply our methods to certain birth-and-death random walks associated with Krawtchouk polynomials.


Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Phenomena, systems, and processes are rarely purely deterministic, but contain stochastic,probabilistic, or random components. For that reason, a probabilistic descriptionof most phenomena is necessary. Probability theory provides us with the tools for thistask. Here, we provide a crash course on the most important notions of probabilityand random processes, such as odds, probability, expectation, variance, and so on. Wedescribe the most elementary stochastic event—the trial—and develop the notion of urnmodels. We discuss basic facts about random variables and the elementary operationsthat can be performed on them. We learn how to compose simple stochastic processesfrom elementary stochastic events, and discuss random processes as temporal sequencesof trials, such as Bernoulli and Markov processes. We touch upon the basic logic ofBayesian reasoning. We discuss a number of classical distribution functions, includingpower laws and other fat- or heavy-tailed distributions.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 70
Author(s):  
Mei Ling Huang ◽  
Xiang Raney-Yan

The high quantile estimation of heavy tailed distributions has many important applications. There are theoretical difficulties in studying heavy tailed distributions since they often have infinite moments. There are also bias issues with the existing methods of confidence intervals (CIs) of high quantiles. This paper proposes a new estimator for high quantiles based on the geometric mean. The new estimator has good asymptotic properties as well as it provides a computational algorithm for estimating confidence intervals of high quantiles. The new estimator avoids difficulties, improves efficiency and reduces bias. Comparisons of efficiencies and biases of the new estimator relative to existing estimators are studied. The theoretical are confirmed through Monte Carlo simulations. Finally, the applications on two real-world examples are provided.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 56
Author(s):  
Haoyu Niu ◽  
Jiamin Wei ◽  
YangQuan Chen

Stochastic Configuration Network (SCN) has a powerful capability for regression and classification analysis. Traditionally, it is quite challenging to correctly determine an appropriate architecture for a neural network so that the trained model can achieve excellent performance for both learning and generalization. Compared with the known randomized learning algorithms for single hidden layer feed-forward neural networks, such as Randomized Radial Basis Function (RBF) Networks and Random Vector Functional-link (RVFL), the SCN randomly assigns the input weights and biases of the hidden nodes in a supervisory mechanism. Since the parameters in the hidden layers are randomly generated in uniform distribution, hypothetically, there is optimal randomness. Heavy-tailed distribution has shown optimal randomness in an unknown environment for finding some targets. Therefore, in this research, the authors used heavy-tailed distributions to randomly initialize weights and biases to see if the new SCN models can achieve better performance than the original SCN. Heavy-tailed distributions, such as Lévy distribution, Cauchy distribution, and Weibull distribution, have been used. Since some mixed distributions show heavy-tailed properties, the mixed Gaussian and Laplace distributions were also studied in this research work. Experimental results showed improved performance for SCN with heavy-tailed distributions. For the regression model, SCN-Lévy, SCN-Mixture, SCN-Cauchy, and SCN-Weibull used less hidden nodes to achieve similar performance with SCN. For the classification model, SCN-Mixture, SCN-Lévy, and SCN-Cauchy have higher test accuracy of 91.5%, 91.7% and 92.4%, respectively. Both are higher than the test accuracy of the original SCN.


Sign in / Sign up

Export Citation Format

Share Document