BOUNDARY CROSSING PROBABILITIES FOR THE CUMULATIVE SAMPLE MEAN

2017 ◽  
Vol 32 (2) ◽  
pp. 275-295
Author(s):  
Dashi I. Singham ◽  
Michael P. Atkinson

We develop a new measure of reliability for the mean behavior of a process by calculating the probability the cumulative sample mean will stay within a given distance from the true mean over a period of time. This probability is derived using boundary-crossing properties of Brownian bridges. We derive finite sample results for independent and identically distributed normal data, limiting results for data meeting a functional central limit theorem, and draw parallels to standard normal confidence intervals. We deliver numerical results for i.i.d., dependent, and queueing processes.

1992 ◽  
Vol 29 (2) ◽  
pp. 460-466 ◽  
Author(s):  
Peter J. Haas

We obtain a limit theorem for the joint distribution of the maximum value and sample mean of a random length sequence of independent and identically distributed random variables. This extends a previous bivariate convergence result for fixed length sequences and incidentally yields a new proof of Berman's classical limit theorem for the maximum value of a random number of random variables. Our approach uses a property of record time sequences and leads to probabilistically intuitive proofs. We also consider the partition of a finite interval into a random number of subintervals by the points of a non-delayed renewal process. Using the bivariate convergence result for random length sequences, we establish a limit theorem for the joint distribution of the number and maximum length of the subintervals as the interval length becomes large. This leads to limiting results for the ratio of the maximum to the mean subinterval length. Such results are of interest in connection with a simple model of parallel processing.


2002 ◽  
Vol 18 (5) ◽  
pp. 1019-1039 ◽  
Author(s):  
Tucker McElroy ◽  
Dimitris N. Politis

The problem of statistical inference for the mean of a time series with possibly heavy tails is considered. We first show that the self-normalized sample mean has a well-defined asymptotic distribution. Subsampling theory is then used to develop asymptotically correct confidence intervals for the mean without knowledge (or explicit estimation) either of the dependence characteristics, or of the tail index. Using a symmetrization technique, we also construct a distribution estimator that combines robustness and accuracy: it is higher-order accurate in the regular case, while remaining consistent in the heavy tailed case. Some finite-sample simulations confirm the practicality of the proposed methods.


1992 ◽  
Vol 29 (02) ◽  
pp. 460-466
Author(s):  
Peter J. Haas

We obtain a limit theorem for the joint distribution of the maximum value and sample mean of a random length sequence of independent and identically distributed random variables. This extends a previous bivariate convergence result for fixed length sequences and incidentally yields a new proof of Berman's classical limit theorem for the maximum value of a random number of random variables. Our approach uses a property of record time sequences and leads to probabilistically intuitive proofs. We also consider the partition of a finite interval into a random number of subintervals by the points of a non-delayed renewal process. Using the bivariate convergence result for random length sequences, we establish a limit theorem for the joint distribution of the number and maximum length of the subintervals as the interval length becomes large. This leads to limiting results for the ratio of the maximum to the mean subinterval length. Such results are of interest in connection with a simple model of parallel processing.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hanji He ◽  
Guangming Deng

We extend the mean empirical likelihood inference for response mean with data missing at random. The empirical likelihood ratio confidence regions are poor when the response is missing at random, especially when the covariate is high-dimensional and the sample size is small. Hence, we develop three bias-corrected mean empirical likelihood approaches to obtain efficient inference for response mean. As to three bias-corrected estimating equations, we get a new set by producing a pairwise-mean dataset. The method can increase the size of the sample for estimation and reduce the impact of the dimensional curse. Consistency and asymptotic normality of the maximum mean empirical likelihood estimators are established. The finite sample performance of the proposed estimators is presented through simulation, and an application to the Boston Housing dataset is shown.


1983 ◽  
Vol 20 (03) ◽  
pp. 529-536
Author(s):  
W. J. R. Eplett

A natural requirement to impose upon the life distribution of a component is that after inspection at some randomly chosen time to check whether it is still functioning, its life distribution from the time of checking should be bounded below by some specified distribution which may be defined by external considerations. Furthermore, the life distribution should ideally be minimal in the partial ordering obtained from the conditional probabilities. We prove that these specifications provide an apparently new characterization of the DFRA class of life distributions with a corresponding result for IFRA distributions. These results may be transferred, using Slepian's lemma, to obtain bounds for the boundary crossing probabilities of a stationary Gaussian process.


Biometrika ◽  
2020 ◽  
Author(s):  
Zhenhua Lin ◽  
Jane-Ling Wang ◽  
Qixian Zhong

Summary Estimation of mean and covariance functions is fundamental for functional data analysis. While this topic has been studied extensively in the literature, a key assumption is that there are enough data in the domain of interest to estimate both the mean and covariance functions. In this paper, we investigate mean and covariance estimation for functional snippets in which observations from a subject are available only in an interval of length strictly (and often much) shorter than the length of the whole interval of interest. For such a sampling plan, no data is available for direct estimation of the off-diagonal region of the covariance function. We tackle this challenge via a basis representation of the covariance function. The proposed estimator enjoys a convergence rate that is adaptive to the smoothness of the underlying covariance function, and has superior finite-sample performance in simulation studies.


1992 ◽  
Vol 8 (4) ◽  
pp. 452-475 ◽  
Author(s):  
Jeffrey M. Wooldridge

A test for neglected nonlinearities in regression models is proposed. The test is of the Davidson-MacKinnon type against an increasingly rich set of non-nested alternatives, and is based on sieve estimation of the alternative model. For the case of a linear parametric model, the test statistic is shown to be asymptotically standard normal under the null, while rejecting with probability going to one if the linear model is misspecified. A small simulation study suggests that the test has adequate finite sample properties, but one must guard against over fitting the nonparametric alternative.


Sign in / Sign up

Export Citation Format

Share Document