STOCHASTIC ORDERING OF LIFETIMES OF PARALLEL AND SERIES SYSTEMS COMPRISING HETEROGENEOUS DEPENDENT COMPONENTS WITH GENERALIZED BIRNBAUM-SAUNDERS DISTRIBUTIONS

Author(s):  
Mehdi Amiri ◽  
Narayanaswamy Balakrishnan ◽  
Ahad Jamalizadeh

In this paper, we discuss stochastic orderings of lifetimes of two heterogeneous parallel and series systems with heterogeneous dependent components having generalized Birnbaum–Saunders distributions. The comparisons presented here are based on the vector majorization of parameters. The ordering results are established in some special cases for the generalized Birnbaum–Saunders distribution based on the multivariate elliptical, normal, t, logistic, and skew-normal kernels. Further, we use these results by considering Archimedean copulas to model the dependence structure among systems with generalized Birnbaum–Saunders components. These results have been used to derive some upper and lower bounds for survival functions of lifetimes of parallel and series systems.

1999 ◽  
Vol 42 (2) ◽  
pp. 349-374 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Martin Bohner ◽  
Patricia J. Y. Wong

We consider the following boundary value problemwhere λ > 0 and 1 ≤ p ≤ n – 1 is fixed. The values of λ are characterized so that the boundary value problem has a positive solution. Further, for the case λ = 1 we offer criteria for the existence of two positive solutions of the boundary value problem. Upper and lower bounds for these positive solutions are also established for special cases. Several examples are included to dwell upon the importance of the results obtained.


Entropy ◽  
2016 ◽  
Vol 18 (11) ◽  
pp. 382 ◽  
Author(s):  
Javier Contreras-Reyes ◽  
Daniel Cortés

Mixture models are in high demand for machine-learning analysis due to their computational tractability, and because they serve as a good approximation for continuous densities. Predominantly, entropy applications have been developed in the context of a mixture of normal densities. In this paper, we consider a novel class of skew-normal mixture models, whose components capture skewness due to their flexibility. We find upper and lower bounds for Shannon and Rényi entropies for this model. Using such a pair of bounds, a confidence interval for the approximate entropy value can be calculated. In addition, an asymptotic expression for Rényi entropy by Stirling’s approximation is given, and upper and lower bounds are reported using multinomial coefficients and some properties and inequalities of L p metric spaces. Simulation studies are then applied to a swordfish (Xiphias gladius Linnaeus) length dataset.


1995 ◽  
Vol 32 (2) ◽  
pp. 176-191 ◽  
Author(s):  
Albert C. Bemmaor

The author develops a probabilistic model that converts stated purchase intents into purchase probabilities. The model allows heterogeneity between nonintenders and intenders with respect to their probability to switch to a new “true” purchase intent after the survey, thereby capturing the typical discrepancy between overall mean purchase intent and subsequent proportion of buyers (bias). When the probability to switch of intenders is larger (smaller) than that of nonintenders, the overall mean purchase intent overestimates (underestimates) the proportion of buyers. As special cases, the author derives upper and lower bounds on proportions of buyers from purchase intents data and shows the consistency of those bounds with observed behavior, except in predictable cases such as new products and business markets. However, a straightforward modification of the model deals with new product purchase forecasts.


2019 ◽  
Vol 29 (01) ◽  
pp. 49-72
Author(s):  
Mark de Berg ◽  
Tim Leijsen ◽  
Aleksandar Markovic ◽  
André van Renssen ◽  
Marcel Roeloffzen ◽  
...  

We introduce the fully-dynamic conflict-free coloring problem for a set [Formula: see text] of intervals in [Formula: see text] with respect to points, where the goal is to maintain a conflict-free coloring for [Formula: see text] under insertions and deletions. A coloring is conflict-free if for each point [Formula: see text] contained in some interval, [Formula: see text] is contained in an interval whose color is not shared with any other interval containing [Formula: see text]. We investigate trade-offs between the number of colors used and the number of intervals that are recolored upon insertion or deletion of an interval. Our results include: a lower bound on the number of recolorings as a function of the number of colors, which implies that with [Formula: see text] recolorings per update the worst-case number of colors is [Formula: see text], and that any strategy using [Formula: see text] colors needs [Formula: see text] recolorings; a coloring strategy that uses [Formula: see text] colors at the cost of [Formula: see text] recolorings, and another strategy that uses [Formula: see text] colors at the cost of [Formula: see text] recolorings; stronger upper and lower bounds for special cases. We also consider the kinetic setting where the intervals move continuously (but there are no insertions or deletions); here we show how to maintain a coloring with only four colors at the cost of three recolorings per event and show this is tight.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Tiziana Calamoneri

International audience The L(h, k)-labeling is an assignment of non negative integer labels to the nodes of a graph such that 'close' nodes have labels which differ by at least k, and 'very close' nodes have labels which differ by at least h. The span of an L(h,k)-labeling is the difference between the largest and the smallest assigned label. We study L(h, k)-labelings of cellular, squared and hexagonal grids, seeking those with minimum span for each value of k and h ≥ k. The L(h,k)-labeling problem has been intensively studied in some special cases, i.e. when k=0 (vertex coloring), h=k (vertex coloring the square of the graph) and h=2k (radio- or λ -coloring) but no results are known in the general case for regular grids. In this paper, we completely solve the L(h,k)-labeling problem on regular grids, finding exact values of the span for each value of h and k; only in a small interval we provide different upper and lower bounds.


2020 ◽  
Vol 34 (02) ◽  
pp. 1894-1901
Author(s):  
Xujin Chen ◽  
Minming Li ◽  
Chenhao Wang

We study single-candidate voting embedded in a metric space, where both voters and candidates are points in the space, and the distances between voters and candidates specify the voters' preferences over candidates. In the voting, each voter is asked to submit her favorite candidate. Given the collection of favorite candidates, a mechanism for eliminating the least popular candidate finds a committee containing all candidates but the one to be eliminated. Each committee is associated with a social value that is the sum of the costs (utilities) it imposes (provides) to the voters. We design mechanisms for finding a committee to optimize the social value. We measure the quality of a mechanism by its distortion, defined as the worst-case ratio between the social value of the committee found by the mechanism and the optimal one. We establish new upper and lower bounds on the distortion of mechanisms in this single-candidate voting, for both general metrics and well-motivated special cases.


2015 ◽  
Vol 26 (04) ◽  
pp. 523-535 ◽  
Author(s):  
Tiziana Calamoneri

Given a graph [Formula: see text] and two positive integers j and k, an [Formula: see text]-edge-labeling is a function f assigning to edges of E colors from a set [Formula: see text] such that [Formula: see text] if e and e′ are adjacent, i.e. they share a common endpoint, [Formula: see text] if e and e′ are not adjacent and there exists an edge adjacent to both e and e′. The aim of the [Formula: see text]-edge-labeling problem consists of finding a coloring function f such that the value of [Formula: see text] is minimum. This minimum value is called [Formula: see text]. This problem has already been studied on hexagonal, squared and triangular grids, but mostly not coinciding upper and lower bounds on [Formula: see text] have been proposed. In this paper we close some of these gaps or find better bounds on [Formula: see text] in the special cases [Formula: see text] and [Formula: see text]. Moreover, we propose tight [Formula: see text]-edge-labelings for eight-regular grids.


1999 ◽  
Vol 6 (6) ◽  
pp. 567-590
Author(s):  
Patricia J. Y. Wong ◽  
Ravi P. Agarwal

Abstract We consider the boundary value problem 𝑦(𝑛) (𝑡) = 𝑃(𝑡, 𝑦), 𝑡 ∈ (0, 1) 𝑦(𝑗) (𝑡𝑖) = 0, 𝑗 = 0, . . . , 𝑛𝑖 – 1, 𝑖 = 1, . . . , 𝑟, where 𝑟 ≥ 2, 𝑛𝑖 ≥ 1 for 𝑖 = 1, . . . , 𝑟, and 0 = 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑟 = 1. Criteria are offered for the existence of double and triple ‘positive’ (in some sense) solutions of the boundary value problem. Further investigation on the upper and lower bounds for the norms of these solutions is carried out for special cases. We also include several examples to illustrate the importance of the results obtained.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Sign in / Sign up

Export Citation Format

Share Document