worst case ratio
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Victoria G. Crawford

In this paper, the monotone submodular maximization problem (SM) is studied. SM is to find a subset of size kappa from a universe of size n that maximizes a monotone submodular objective function f . We show using a novel analysis that the Pareto optimization algorithm achieves a worst-case ratio of (1 − epsilon)(1 − 1/e) in expectation for every cardinality constraint kappa < P , where P ≤ n + 1 is an input, in O(nP ln(1/epsilon)) queries of f . In addition, a novel evolutionary algorithm called the biased Pareto optimization algorithm, is proposed that achieves a worst-case ratio of (1 − epsilon)(1 − 1/e − epsilon) in expectation for every cardinality constraint kappa < P in O(n ln(P ) ln(1/epsilon)) queries of f . Further, the biased Pareto optimization algorithm can be modified in order to achieve a a worst-case ratio of (1 − epsilon)(1 − 1/e − epsilon) in expectation for cardinality constraint kappa in O(n ln(1/epsilon)) queries of f . An empirical evaluation corroborates our theoretical analysis of the algorithms, as the algorithms exceed the stochastic greedy solution value at roughly when one would expect based upon our analysis.


2020 ◽  
Vol 34 (02) ◽  
pp. 1766-1773
Author(s):  
Alessandro Aloisio ◽  
Michele Flammini ◽  
Cosimo Vinci

We consider a class of coalition formation games that can be succinctly represented by means of hypergraphs and properly generalizes symmetric additively separable hedonic games. More precisely, an instance of hypegraph hedonic game consists of a weighted hypergraph, in which each agent is associated to a distinct node and her utility for being in a given coalition is equal to the sum of the weights of all the hyperedges included in the coalition. We study the performance of stable outcomes in such games, investigating the degradation of their social welfare under two different metrics, the k-Nash price of anarchy and k-core price of anarchy, where k is the maximum size of a deviating coalition. Such prices are defined as the worst-case ratio between the optimal social welfare and the social welfare obtained when the agents reach an outcome satisfying the respective stability criteria. We provide asymptotically tight upper and lower bounds on the values of these metrics for several classes of hypergraph hedonic games, parametrized according to the integer k, the hypergraph arity r and the number of agents n. Furthermore, we show that the problem of computing the exact value of such prices for a given instance is computationally hard, even in case of non-negative hyperedge weights.


2020 ◽  
Vol 34 (02) ◽  
pp. 1894-1901
Author(s):  
Xujin Chen ◽  
Minming Li ◽  
Chenhao Wang

We study single-candidate voting embedded in a metric space, where both voters and candidates are points in the space, and the distances between voters and candidates specify the voters' preferences over candidates. In the voting, each voter is asked to submit her favorite candidate. Given the collection of favorite candidates, a mechanism for eliminating the least popular candidate finds a committee containing all candidates but the one to be eliminated. Each committee is associated with a social value that is the sum of the costs (utilities) it imposes (provides) to the voters. We design mechanisms for finding a committee to optimize the social value. We measure the quality of a mechanism by its distortion, defined as the worst-case ratio between the social value of the committee found by the mechanism and the optimal one. We establish new upper and lower bounds on the distortion of mechanisms in this single-candidate voting, for both general metrics and well-motivated special cases.


2020 ◽  
Vol 34 (02) ◽  
pp. 2079-2086
Author(s):  
David Kempe

Distortion-based analysis has established itself as a fruitful framework for comparing voting mechanisms. m voters and n candidates are jointly embedded in an (unknown) metric space, and the voters submit rankings of candidates by non-decreasing distance from themselves. Based on the submitted rankings, the social choice rule chooses a winning candidate; the quality of the winner is the sum of the (unknown) distances to the voters. The rule's choice will in general be suboptimal, and the worst-case ratio between the cost of its chosen candidate and the optimal candidate is called the rule's distortion. It was shown in prior work that every deterministic rule has distortion at least 3, while the Copeland rule and related rules guarantee distortion at most 5; a very recent result gave a rule with distortion 2 + √5 ≈ 4.236.We provide a framework based on LP-duality and flow interpretations of the dual which provides a simpler and more unified way for proving upper bounds on the distortion of social choice rules. We illustrate the utility of this approach with three examples. First, we show that the Ranked Pairs and Schulze rules have distortion Θ(√n). Second, we give a fairly simple proof of a strong generalization of the upper bound of 5 on the distortion of Copeland, to social choice rules with short paths from the winning candidate to the optimal candidate in generalized weak preference graphs. A special case of this result recovers the recent 2 + √5 guarantee. Finally, our framework naturally suggests a combinatorial rule that is a strong candidate for achieving distortion 3, which had also been proposed in recent work. We prove that the distortion bound of 3 would follow from any of three combinatorial conjectures we formulate.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Lisi Cao ◽  
Jianhong Hao ◽  
Dakui Jiang

A problem of parallel machine scheduling with coordinated job deliveries is handled to minimize the makespan. Different jobs call for dissimilar sizes of storing space in the process of transportation. A range of jobs of one customer in the problem have priority to be processed on two identical parallel machines without preemption and then delivered to the customer by two vehicles in batches. For this NP-hard problem, we first prove that it is impossible to have a polynomial heuristic with a worst-case performance ratio bound less than 2 unless P = NP. Thereafter, we develop a polynomial heuristic for this problem, the worst-case ratio of which is bounded by 2.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989243 ◽  
Author(s):  
Jiayu Shen ◽  
Yuanguo Zhu

Most studies on scheduling problem have assumed that the machine is continuously available. However, the machine is likely to be unavailable for many practical reasons (e.g. breakdown and planned preventive maintenance). Once a machine is not available, the optimal scheme in the deterministic scenario may not be the optimal choice. To address the actual scenario, a scheduling problem with two identical parallel machines, one of which requires periodic maintenance, is considered in this article. For uncertainties in reality, the processing and maintenance time are considered as uncertain variables. A novel method to study the worst-case ratio in an uncertain scenario is proposed. It is shown that the worst-case ratio of the longest processing time algorithm is 3/2 at a high confidence level. Given theoretical analysis results, an modified algorithm is proposed. Finally, numerical experiments are used to verify the feasibility of the modified algorithm.


Author(s):  
Mingyu Guo

We study the classic public project problem, where a group of agents need to decide whether or not to build a non-excludable public project.  We focus on efficient, strategy-proof, and weakly budget-balanced mechanisms (VCG redistribution mechanisms). Our aim is to maximize the worst-case efficiency ratio --- the worst-case ratio between the achieved total utility and the first-best maximum total utility. Previous studies have identified the optimal mechanism for 3 agents.  It was also conjectured that the worst-case efficiency ratio approaches 1 asymptotically as the number of agents approaches infinity.  Unfortunately, no optimal mechanisms have been identified for cases with more than 3 agents. We propose an asymptotically optimal mechanism, which achieves a worst-case efficiency ratio of 1, under a minor technical assumption: we assume the agents' valuations are rational numbers with bounded denominators.  We also show that if the agents' valuations are drawn from identical and independent distributions, our mechanism's efficiency ratio equals 1 with probability approaching 1 asymptotically.  Our results significantly improve on previous results. The best previously known asymptotic worst-case efficiency ratio is 0.102.  For non-asymptotic cases, our mechanisms also achieve better ratios than all previous results.  


2016 ◽  
Vol 27 (07) ◽  
pp. 809-827
Author(s):  
David Caissy ◽  
Andrzej Pelc

We consider the problem of exploration of networks, some of whose edges are faulty. A mobile agent, situated at a starting node and unaware of which edges are faulty, has to explore the connected fault-free component of this node by visiting all of its nodes. The cost of the exploration is the number of edge traversals. For a given network and given starting node, the overhead of an exploration algorithm is the worst-case ratio (taken over all fault configurations) of its cost to the cost of an optimal algorithm which knows where faults are situated. An exploration algorithm, for a given network and given starting node, is called perfectly competitive if its overhead is the smallest among all exploration algorithms not knowing the location of faults. We design a perfectly competitive exploration algorithm for any ring, and show that, for networks modeled by hamiltonian graphs, the overhead of any DFS exploration is at most 10/9 times larger than that of a perfectly competitive algorithm. Moreover, for hamiltonian graphs of size at least 24, this overhead is less than 6% larger than that of a perfectly competitive algorithm.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Xueling Zhong ◽  
Dakui Jiang

This paper investigates an integrated scheduling of production and distribution model in a supply chain consisting of a single machine, a customer, and a sufficient number of homogeneous capacitated vehicles. In this model, the customer places a set of orders, each of which has a given release date. All orders are first processed nonpreemptively on the machine and then batch delivered to the customer. Two variations of the model with different objective functions are studied: one is to minimize the arrival time of the last order plus total distribution cost and the other is to minimize total arrival time of the orders plus total distribution cost. For the former one, we provide a polynomial-time exact algorithm. For the latter one, due to its NP-hard property, we provide a heuristic with a worst-case ratio bound of 2.


2015 ◽  
Vol 32 (01) ◽  
pp. 1540003
Author(s):  
Xujin Chen ◽  
Xiaodong Hu ◽  
Weidong Ma

This paper concerns the asymmetric atomic selfish routing game for load balancing in ring networks. In the selfish routing, each player selects a path in the ring network to route one unit traffic between its source and destination nodes, aiming at a minimum maximum link load along its own path. The selfish path selections by individuals ignore the system objective of minimizing the maximum load over all network links. This selfish ring load (SRL) game arises in a wide variety of applications in decentralized network routing, where network performance is often measured by the price of anarchy (PoA), the worst-case ratio between the maximum link loads in an equilibrium routing and an optimal routing. It has been known that the PoA of SRL with respect to classical Nash Equilibrium (NE) cannot be upper bounded by any constant, showing large loss of efficiency at some NE outcome. In an effort to improve the network performance in the SRL game, we generalize the model to so-called SRL with collusion (SRLC) which allows coordination within any coalition of up to k selfish players on the condition that every player of the coalition benefits from the coordination. We prove that, for m-player game on n-node ring, the PoA of SRLC is n - 1 when k ≤ 2, drops to 2 when k = 3 and is at least 1 + 2/m for k ≥ 4. Our study shows that on one hand, the performance of ring networks, in terms of maximum load, benefits significantly from coordination of self-interested players within small-sized coalitions; on the other hand, the equilibrium routing in SRL might not reach global optimum even if any number of players can coordinate.


Sign in / Sign up

Export Citation Format

Share Document