Memory, Attention, and Inductive Learning

1999 ◽  
Vol 21 (1) ◽  
pp. 1-48 ◽  
Author(s):  
John N. Williams

Three experiments investigated the relationship between memory for input and inductive learning of morphological rules relating to functional categories in a semiartificial form of Italian. A verbatim memory task was used as both the vehicle for presenting sentences and as a continuous measure of memory performance. Experiments 2 and 3 introduced increasingly explicit manipulations of attention to form compared to Experiment 1. In all experiments there were strong relationships between individual differences in memory for input as measured early in the experiment and eventual learning outcomes, and in Experiments 2 and 3 learning form-form (but not form-function) rules was related to vocabulary learning efficiency (taken as a measure of phonological long-term memory ability). These relationships along with the lack of an effect of feedback in Experiment 3 suggest that subjects tended to adopt a data-driven, as opposed to conceptually driven, mode of learning. However, the fact that the introduction of highlighting and vocabulary pretraining in Experiment 2 had a large impact on learning without improving early memory is taken to suggest that knowledge of distributional rules does not simply emerge out of memory encodings of the relevant forms but depends upon the appropriate allocation of attention over relationships between input elements at the time of encoding.

2021 ◽  
Author(s):  
Benjamin Goecke ◽  
Klaus Oberauer

In tests of working memory with verbal or spatial materials repeating the same memory sets across trials leads to improved memory performance. This well-established “Hebb repetition effect” could not be shown for visual materials. This absence of the Hebb effect can be explained in two ways: Either persons fail to acquire a long-term memory representation of the repeated memory sets, or they acquire such long-term memory representations, but fail to use them during the working memory task. In two experiments, (N1 = 18 and N2 = 30), we aimed to decide between these two possibilities by manipulating the long-term memory knowledge of some of the memory sets used in a change-detection task. Before the change-detection test, participants learned three arrays of colors to criterion. The subsequent change-detection test contained both previously learned and new color arrays. Change detection performance was better on previously learned compared to new arrays, showing that long-term memory is used in change detection.


2013 ◽  
Vol 30 (2) ◽  
pp. 105-118 ◽  
Author(s):  
Tracy Packiam Alloway ◽  
Evan Copello

Working memory, our ability to work with information, plays an important role in learning from kindergarten to the college years. In this article, we review the what, the why, and the how of working memory. First, we explore the relationship between working memory, short-term memory, and long-term memory. We also investigate research on the link between whether environmental factors, such as financial background and mother's educational level, affect working memory. In the next section — the why of working memory — we compare the predictive nature of working memory and IQ in learning outcomes. While IQ typically measures the knowledge acquired by the student, working memory measures what they do with that knowledge. Working memory skills are linked to key learning outcomes, including reading and math. In the final section, we present classroom strategies to support working memory. We also review current research on the efficacy of working memory training.


Author(s):  
Benjamin Goecke ◽  
Klaus Oberauer

AbstractIn tests of working memory with verbal or spatial materials, repeating the same memory sets across trials leads to improved memory performance. This well-established “Hebb repetition effect” could not be shown for visual materials in previous research. The absence of the Hebb effect can be explained in two ways: Either persons fail to acquire a long-term memory representation of the repeated memory sets, or they acquire such long-term memory representations, but fail to use them during the working memory task. In two experiments (N1 = 18 and N2 = 30), we aimed to decide between these two possibilities by manipulating the long-term memory knowledge of some of the memory sets used in a change-detection task. Before the change-detection test, participants learned three arrays of colors to criterion. The subsequent change-detection test contained both previously learned and new color arrays. Change detection performance was better on previously learned compared with new arrays, showing that long-term memory is used in change detection.


SLEEP ◽  
2020 ◽  
Author(s):  
Ruth L F Leong ◽  
Nicole Yu ◽  
Ju Lynn Ong ◽  
Alyssa S C Ng ◽  
S Azrin Jamaluddin ◽  
...  

Abstract Study Objectives Afternoon naps benefit memory but this may depend on whether one is a habitual napper (HN; ≥1 nap/week) or non-habitual napper (NN). Here, we investigated whether a nap would benefit HN and NN differently, as well as whether HN would be more adversely affected by nap restriction compared to NN. Methods Forty-six participants in the nap condition (HN-nap: n = 25, NN-nap: n = 21) took a 90-min nap (14:00–15:30 pm) on experimental days while 46 participants in the Wake condition (HN-wake: n = 24, NN-wake: n = 22) remained awake in the afternoon. Memory tasks were administered after the nap to assess short-term topographical memory and long-term memory in the form of picture encoding and factual knowledge learning respectively. Results An afternoon nap boosted picture encoding and factual knowledge learning irrespective of whether one habitually napped (main effects of condition (nap/wake): ps < 0.037). However, we found a significant interaction for the hippocampal-dependent topographical memory task (p = 0.039) wherein a nap, relative to wake, benefitted habitual nappers (HN-nap vs HN-wake: p = 0.003) compared to non-habitual nappers (NN-nap vs. NN-wake: p = 0.918). Notably for this task, habitual nappers’ performance significantly declined if they were not allowed to nap (HN-wake vs NN-wake: p = 0.037). Conclusions Contrary to concerns that napping may be disadvantageous for non-habitual nappers, we found that an afternoon nap was beneficial for long-term memory tasks even if one did not habitually nap. Naps were especially beneficial for habitual nappers performing a short-term topographical memory task, as it restored the decline that would otherwise have been incurred without a nap. Clinical Trial Information NCT04044885.


2021 ◽  
pp. 1-17
Author(s):  
Megan T. deBettencourt ◽  
Stephanie D. Williams ◽  
Edward K. Vogel ◽  
Edward Awh

Abstract Our attention is critically important for what we remember. Prior measures of the relationship between attention and memory, however, have largely treated “attention” as a monolith. Here, across three experiments, we provide evidence for two dissociable aspects of attention that influence encoding into long-term memory. Using spatial cues together with a sensitive continuous report procedure, we find that long-term memory response error is affected by both trial-by-trial fluctuations of sustained attention and prioritization via covert spatial attention. Furthermore, using multivariate analyses of EEG, we track both sustained attention and spatial attention before stimulus onset. Intriguingly, even during moments of low sustained attention, there is no decline in the representation of the spatially attended location, showing that these two aspects of attention have robust but independent effects on long-term memory encoding. Finally, sustained and spatial attention predicted distinct variance in long-term memory performance across individuals. That is, the relationship between attention and long-term memory suggests a composite model, wherein distinct attentional subcomponents influence encoding into long-term memory. These results point toward a taxonomy of the distinct attentional processes that constrain our memories.


2018 ◽  
Author(s):  
M.J. Spriggs ◽  
C.S. Thompson ◽  
D Moreau ◽  
N.A. McNair ◽  
C.C. Wu ◽  
...  

BackgroundLong-Term Potentiation (LTP) is recognised as a core neuronal process underlying long-term memory. However, a direct relationship between LTP and human memory performance is yet to be demonstrated. The first aim of the current study was thus to assess the relationship between LTP and human long-term memory performance. With this also comes an opportunity to explore factors thought to mediate the relationship between LTP and long-term memory, and to gain additional insight into variations in memory function and memory decline. The second aim of the current study was to explore the relationship between LTP and memory in groups differing with respect to BDNF Val66Met; a single nucleotide polymorphism implicated in memory function.Methods28 participants (15 female) were split into three genotype groups (Val/Val, Val/Met, Met/Met) and were presented with both an EEG paradigm for inducing LTP-like enhancements of the visually-evoked response, and a test of visual memory.ResultsThe magnitude of LTP 40 minutes after induction was predictive of long-term memory performance. Additionally, the BDNF Met allele was associated with both reduced LTP and reduced memory performance.ConclusionsThe current study not only presents the first evidence for a relationship between sensory LTP and human memory performance, but also demonstrates how targeting this relationship can provide insight into factors implicated in variation in human memory performance. It is anticipated that this will be of utility to future clinical studies of disrupted memory function.


2020 ◽  
Author(s):  
Megan T. deBettencourt ◽  
Stephanie D. Williams ◽  
Edward K. Vogel ◽  
Edward Awh

AbstractOur attention is critically important for what we remember. Prior measures of the relationship between attention and memory, however, have largely treated “attention” as a monolith. Here, across three experiments, we provide evidence for two dissociable aspects of attention that influence encoding into long-term memory. Using spatial cues together with a sensitive continuous report procedure, we find that long-term memory response error is affected by both trial-by-trial fluctuations of sustained attention and prioritization via covert spatial attention. Furthermore, using multivariate analyses of EEG, we track both sustained attention and spatial attention prior to stimulus onset. Intriguingly, even during moments of low sustained attention, there is no decline in the representation of the spatially attended location, showing that these two aspects of attention have robust but independent effects on long term memory encoding. Finally, sustained and spatial attention predicted distinct variance in long-term memory performance across individuals. That is, the relationship between attention and long-term memory suggests a composite model, wherein distinct attentional subcomponents influence encoding into long-term memory. These results point towards a taxonomy of the distinct attentional processes that constrain our memories.


2018 ◽  
Author(s):  
Mark W. Schurgin ◽  
Corbin A. Cunningham ◽  
Howard E. Egeth ◽  
Timothy F. Brady

AbstractHumans have remarkable visual long-term memory abilities, capable of storing thousands of objects with significant detail. However, it remains unknown how such memory is utilized during the short-term maintenance of information. Specifically, if people have a previously encoded memory for an item, how does this affect subsequent working memory for that same item? Here, we demonstrate people can quickly and accurately make use of visual long-term memories and therefore maintain less perceptual information actively in working memory. We assessed how much perceptual information is actively maintained in working memory by measuring neural activity during the delay period of a working memory task using electroencephalography. We find that despite maintaining less perceptual information in working memory when long-term memory representations are available, there is no decrement in memory performance. This suggests under certain circumstances people can dynamically disengage working memory maintenance and instead use long-term memories when available. However, this does not mean participants always utilize long-term memory. In a follow-up experiment, we introduced additional perceptual interference into working memory and found participants actively maintained items in working memory even when they had existing long-term memories available. These results clarify the kinds of conditions under which long-term and working memory operate. Specifically, working memory is engaged when new information is encountered or perceptual interference is high. Visual long-term memory may otherwise be rapidly accessed and utilized in lieu of active perceptual maintenance. These data demonstrate the interactions between working memory and long-term memory are more dynamic and fluid than previously thought.


2013 ◽  
Vol 26 (3) ◽  
pp. 199-201 ◽  
Author(s):  
Bonnie van Geldorp ◽  
Roy P. C. Kessels ◽  
Marc P. H. Hendriks

In this study, we examined working memory performance of stroke patients. A previous study assessing amnesia patients found deficits on an associative working memory task, although standard neuropsychological working memory tests did not detect any deficits. We now examine whether this may be the case for stoke patients as well. The current task contained three conditions: one spatial condition, one object condition and one binding condition in which both object and location had to be remembered. In addition, subsequent long-term memory was assessed. The results indicate that our sample of stroke patients shows a working memory deficit, but only on the single-feature conditions. The binding condition was more difficult than both single-feature conditions, but patients performed equally well as compared to matched healthy controls. No deficits were found on the subsequent long-term memory task. These results suggest that associative working memory may be mediated by structures of the medial temporal lobe.


2021 ◽  
Author(s):  
Corinna Martarelli ◽  
Rebecca Ovalle-Fresa

Disengaging from the external world—a phenomenon referred to as mind wandering—is a ubiquitous experience that has been shown to be associated with detriments in cognitive performance across a large range of tasks. In the current web-based study, we investigated the impact of task disengagement at encoding on memory performance, specifically on the quantitative (likelihood of successful recall) and qualitative (recall precision) aspects of visual long-term memory. We used a continuous delayed estimation paradigm in combination with mathematical modeling of the participants’ recall errors to distinguish the impact of off- and on-task encoding processes on visual long-term memory. Task disengagement was assessed with thought probes on a dichotomous (on- vs. off-task) and a continuous response scale (from 0% to 100% on-task). The participants were tested in an online setting (not-assisted condition, n = 27) and in an online setting assisted by an experimenter (phone-assisted condition, n = 27). The results show that being disengaged from the task during encoding predicted worse memory performance in terms of both quantity and quality. The findings suggest a graded nature of task disengagement that covaries with fine-grained differences in subsequent memory performance. Furthermore, the results highlight the potential of assessing task disengagement using thought probes in a web-based experiment.


Sign in / Sign up

Export Citation Format

Share Document