Another characteristic property of the Poisson distribution

1970 ◽  
Vol 68 (1) ◽  
pp. 167-169 ◽  
Author(s):  
D. N. Shanbhag

1. Introduction: In (4) Moran considers two independent random variables X and Y taking non-negative integral values to give a characterization of the Poisson distribution. He establishes that the conditional distribution of X, given the total X + Y, is binomial for all given values of X + Y and there exists at least one i so that P(x = i) > 0, P( Y = i) > 0 if and only if X and Y have Poisson distributions. A slightly improved version of this result is given by Chatterji (1). For a comprehensive bibliography on the Poisson distribution the reader is referred to (3).

1972 ◽  
Vol 9 (4) ◽  
pp. 852-856 ◽  
Author(s):  
J. Aczél

The conjecture pronounced at the end of the paper of Srivastava and Srivastava (1970) is proved in this paper. It gives the following characterization of (bivariate) Poisson distributions. Suppose that items of two types have been observed certain numbers of times, but these original observations have been reduced due to a destructive process which is the product of two binomial distributions and that the probabilities of these reduced numbers are the same whether damaged or undamaged. Then the original random variables had a bivariate Poisson distribution with zero mutual dependence coefficient.


1981 ◽  
Vol 18 (1) ◽  
pp. 316-320 ◽  
Author(s):  
George Kimeldorf ◽  
Detlef Plachky ◽  
Allan R. Sampson

Let N, X1, X2, · ·· be non-constant independent random variables with X1, X2, · ·· being identically distributed and N being non-negative and integer-valued. It is shown that the independence of and implies that the Xi's have a Bernoulli distribution and N has a Poisson distribution. Other related characterization results are considered.


1972 ◽  
Vol 9 (04) ◽  
pp. 852-856 ◽  
Author(s):  
J. Aczél

The conjecture pronounced at the end of the paper of Srivastava and Srivastava (1970) is proved in this paper. It gives the following characterization of (bivariate) Poisson distributions. Suppose that items of two types have been observed certain numbers of times, but these original observations have been reduced due to a destructive process which is the product of two binomial distributions and that the probabilities of these reduced numbers are the same whether damaged or undamaged. Then the original random variables had a bivariate Poisson distribution with zero mutual dependence coefficient.


1981 ◽  
Vol 18 (01) ◽  
pp. 316-320 ◽  
Author(s):  
George Kimeldorf ◽  
Detlef Plachky ◽  
Allan R. Sampson

Let N, X 1, X 2, · ·· be non-constant independent random variables with X 1, X 2, · ·· being identically distributed and N being non-negative and integer-valued. It is shown that the independence of and implies that the Xi 's have a Bernoulli distribution and N has a Poisson distribution. Other related characterization results are considered.


1990 ◽  
Vol 22 (2) ◽  
pp. 350-374 ◽  
Author(s):  
S. T. Rachev ◽  
L. Rüschendorf

The approximation of sums of independent random variables by compound Poisson distributions with respect to stop-loss distances is investigated. These distances are motivated by risk-theoretic considerations. In contrast to the usual construction of approximating compound Poisson distributions, the method suggested in this paper is to fit several moments. For two moments, this can be achieved by scale transformations. It is shown that the new approximations are more stable and improve the usual approximations by accompanying laws in examples where the probability 1 – pi that the ith summand is zero is not too large.


2010 ◽  
Vol 88 (1) ◽  
pp. 93-102 ◽  
Author(s):  
MARGARYTA MYRONYUK

AbstractLet X be a countable discrete abelian group with automorphism group Aut(X). Let ξ1 and ξ2 be independent X-valued random variables with distributions μ1 and μ2, respectively. Suppose that α1,α2,β1,β2∈Aut(X) and β1α−11±β2α−12∈Aut(X). Assuming that the conditional distribution of the linear form L2 given L1 is symmetric, where L2=β1ξ1+β2ξ2 and L1=α1ξ1+α2ξ2, we describe all possibilities for the μj. This is a group-theoretic analogue of Heyde’s characterization of Gaussian distributions on the real line.


2019 ◽  
Vol 489 (3) ◽  
pp. 227-231
Author(s):  
G. M. Feldman

According to the Heyde theorem the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. We prove an analogue of this theorem for linear forms of two independent random variables taking values in an -adic solenoid containing no elements of order 2. Coefficients of the linear forms are topological automorphisms of the -adic solenoid.


1981 ◽  
Vol 18 (3) ◽  
pp. 652-659 ◽  
Author(s):  
M. J. Phillips

The negative exponential distribution is characterized in terms of two independent random variables. Only one of the random variables has a negative exponential distribution whilst the other can belong to a wide class of distributions. This result is then applied to two models for the reliability of a system of two modules subject to revealed and unrevealed faults to show when the models are equivalent. It is also shown, under certain conditions, that the system availability is only independent of the distribution of revealed failure times in one module when unrevealed failure times in the other module have a negative exponential distribution.


1983 ◽  
Vol 20 (01) ◽  
pp. 202-208 ◽  
Author(s):  
George Kimeldorf ◽  
Peter F. Thall

It has been recently proved that if N, X 1, X 2, … are non-constant mutually independent random variables with X 1,X 2, … identically distributed and N non-negative and integer-valued, then the independence of and implies that X 1 is Bernoulli and N is Poisson. A well-known theorem in point process theory due to Fichtner characterizes a Poisson process in terms of a sum of independent thinnings. In the present article, simultaneous generalizations of both of these results are provided, including a joint characterization of the multinomial distribution and the Poisson process.


1981 ◽  
Vol 18 (03) ◽  
pp. 652-659 ◽  
Author(s):  
M. J. Phillips

The negative exponential distribution is characterized in terms of two independent random variables. Only one of the random variables has a negative exponential distribution whilst the other can belong to a wide class of distributions. This result is then applied to two models for the reliability of a system of two modules subject to revealed and unrevealed faults to show when the models are equivalent. It is also shown, under certain conditions, that the system availability is only independent of the distribution of revealed failure times in one module when unrevealed failure times in the other module have a negative exponential distribution.


Sign in / Sign up

Export Citation Format

Share Document