The function and associated polynomials

Author(s):  
D. F. Lawden

A transform method for the solution of linear difference equations, analogous to the method of the Laplace transform in the field of linear differential equations, has been described by Stone (1). The transform u(z) of a sequence un is defined by the equation

1975 ◽  
Vol 27 (3) ◽  
pp. 508-512
Author(s):  
G. B. Gustafson ◽  
S. Sedziwy

Consider the wth order scalar ordinary differential equationwith pr ∈ C([0, ∞) → R ) . The purpose of this paper is to establish the following:DECOMPOSITION THEOREM. The solution space X of (1.1) has a direct sum Decompositionwhere M1 and M2 are subspaces of X such that(1) each solution in M1\﹛0﹜ is nonzero for sufficiently large t ﹛nono sdilatory) ;(2) each solution in M2 has infinitely many zeros ﹛oscillatory).


2018 ◽  
Vol 23 (4) ◽  
pp. 76
Author(s):  
Julia Gregori ◽  
Juan López ◽  
Marc Sanz

The objective of this paper is to complete certain issues from our recent contribution (Calatayud, J.; Cortés, J.-C.; Jornet, M.; Villafuerte, L. Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Adv. Differ. Equ. 2018, 392, 1–29, doi:10.1186/s13662-018-1848-8). We restate the main theorem therein that deals with the homogeneous case, so that the hypotheses are clearer and also easier to check in applications. Another novelty is that we tackle the non-homogeneous equation with a theorem of existence of mean square analytic solution and a numerical example. We also prove the uniqueness of mean square solution via a habitual Lipschitz condition that extends the classical Picard theorem to mean square calculus. In this manner, the study on general random non-autonomous second order linear differential equations with analytic data processes is completely resolved. Finally, we relate our exposition based on random power series with polynomial chaos expansions and the random differential transform method, the latter being a reformulation of our random Fröbenius method.


Author(s):  
O. Arino ◽  
M. A. El Attar

Consider the general expression of such equations in the formwhere Ai, Bj, ∊ ℝ, δo = 0 dn/ 0, dn are n-derivatives, n ≧ l, the σj'S and δj,'s respectively, are ordered as an increasing family with possibly positive and negative terms. These are the deviating arguments. In this paper, we provide a proof of this result based on the use of the Laplace transform. Our method involves new results regarding the exponential growth of positive solutions for such equations.


1914 ◽  
Vol 33 ◽  
pp. 2-13 ◽  
Author(s):  
E. Lindsay Ince

The differential equation of Mathieu, or the equation of the elliptic cylinder functionsis known by the theory of linear differential equations to have a general solution of the typeφ and ψ being periodic functions of z, with period 2π.


Author(s):  
Ch. G. Philos

SynopsisThis paper deals with the oscillatory and asymptotic behaviour of all solutions of a class of nth order (n > 1) non-linear differential equations with deviating arguments involving the so called nth order r-derivative of the unknown function x defined bywhere r1, (i = 0,1,…, n – 1) are positive continuous functions on [t0, ∞). The results obtained extend and improve previous ones in [7 and 15] even in the usual case where r0 = r1 = … = rn–1 = 1.


Sign in / Sign up

Export Citation Format

Share Document