On the Taylor coefficients of rational functions

Author(s):  
K. Mahler ◽  
J. W. S. Cassels

Let F(z) be a rational function of z which is regular at z = 0 and so possesses a convergent power seriesThe problem arises of characterizing those rational functions F(z) that have infinitely many vanishing Taylor coefficientsfh. After earlier and more special results by Siegel(2) and Ward(4) I applied in 1934(1) a p-adic method due to Skolem(3) to the problem and obtained the following partial solution.

1937 ◽  
Vol 30 ◽  
pp. xxvii-xviii
Author(s):  
A. C. Aitken

Suppose a polynomial or convergent power seriesis raised to powers j = 0, 1, 2, 3, … The coefficients of xk in [f(x)]j, k = 0, 1, 2, …, may be entered as elements in positions (j, k) in an array or matrix F, thus:By construction all elements in column (k) have weight (sum of suffixes) equal to k.


Author(s):  
J. K. Langley

Let f be transcendental and meromorphic in the plane and let the non-homogeneous linear differential polynomials F and G be defined by where k,n ∈ N and a, b and the aj, bj are rational functions. Under the assumption that F and G have few zeros, it is shown that either F and G reduce to homogeneous linear differential polynomials in f + c, where c is a rational function that may be computed explicitly, or f has a representation as a rational function in solutions of certain associated linear differential equations, which again may be determined explicitly from the aj, bj and a and b.


1978 ◽  
Vol 84 (3) ◽  
pp. 497-505 ◽  
Author(s):  
V. Garber

In the theory of the iteration of a rational function or transcendental entire function R(z) of the complex variable z we study the sequence of natural iterates, {Rn(z):n = 0, 1,…}, of R, whereThe domain of definition of the iterates is , the extended complex plane (if R is rational), and (if R is entire transcendental) with the topology of the chordal metric and euclidean metric respectively. Fatou(5) and Julia(9) developed a global theory of the iteration of a rational function. In (6) Fatou extended the theory of (5) to transcendental entire functions. A central role is played in the theory by the F-set, F(R), of R, R rational or entire, which is defined to be the set of points at which the family of iterates do not form a normal family in the sense of Montel.


1960 ◽  
Vol 12 ◽  
pp. 20-26 ◽  
Author(s):  
Z. A. Melzak

Let denote the set of functions of a complex variable z, regular at z = 0, and let I denote the set of non-negative integers. For f ∈ putFor a given subset 0 of there arises the problem of characterizing the admissible gap sets If of functions f in 0. When 0 is the set R of rational functions a complete solution in given by the following theorem:(A) Let f ∈ R and let If be infinite. Then there exist integers L, L1, L2… , L3 such that 0 ≤ L1 < L2 … < Ls < L, and If = {n|n ∈ I, n ≡ Lj (mod L), j =1, … , s} U I\ where V is a Unite exceptional set.


1982 ◽  
Vol 34 (4) ◽  
pp. 1011-1024 ◽  
Author(s):  
Ronald Evans ◽  
Mourad E. H. Ismail ◽  
Dennis Stanton

The constant term of certain rational functions has attracted much attention recently. For example the Dyson conjecture; that the constant term ofis the multinomial coefficienthas spawned many generalizations (see [2], [7]). In this paper we consider some other families of rational functions which have interesting constant terms. For example, Corollary 4 states that the constant term of(1.1)is . Here, and throughout this paper, A and B denote fixed positive integers.In order to prove this result, we consider the rational function in two variables


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


Author(s):  
S. N. Afriat

Since the first introduction of the concept of a matrix, questions about functions of matrices have had the attention of many writers, starting with Cayley(i) in 1858, and Laguerre(2) in 1867. In 1883, Sylvester(3) defined a general function φ(a) of a matrix a with simple characteristic roots, by use of Lagrange's interpolation formula, and Buchheim (4), in 1886, extended his definition to the case of multiple characteristic roots. Then Weyr(5) showed in 1887 that, for a matrix a with characteristic roots lying inside the circle of convergence of a power series φ(ζ), the power series φ(a) is convergent; and in 1900 Poincaré (6) obtained the formulaefor the sum, where C is a circle lying in and concentric with the circle of convergence, and containing all the characteristic roots in its ulterior, such a formula having effectively been suggested by Frobenius(7) in 1896 for defining a general function of a matrix. Phillips (8), in 1919, discovered the analogue, for power series in matrices, of Taylor's theorem. In 1926 Hensel(9) completed the result of Weyr by showing that a necessary and sufficient condition for the convergence of φ(a) is the convergence of the derived series φ(r)(α) (0 ≼ r < mα; α) at each characteristic root α of a, of order r at most the multiplicity mα of α. In 1928 Giorgi(10) gave a definition, depending on the classical canonical decomposition of a matrix, which is equivalent to the contour integral formula, and Fantappie (11) developed the theory of this formula, and obtained the expressionfor the characteristic projectors.


Sign in / Sign up

Export Citation Format

Share Document