Single-centre expansions for the hydrogen molecular ion. II

Author(s):  
M. Cohen

In an earlier paper (Cohen and Coulson(3), referred to hereafter as I), it was shown that satisfactory energy eigenvalues and eigenfunctions for various even σ-states of may be obtained using a single-centre expansion, provided that the radial functions are properly determined. In particular, the ground-state energy at the equilibrium internuclear separation of 2 a.u. was found to be within 0·25% of the exact value (Bates, Ledsham and Stewart (2)), and the eigenfunction reproduced all the characteristics of the exact wave-function. The method has now been extended to the odd σ-states, as well as to the two lowest π-states (2pπu, 3dπg), and the results are in good agreement with the calculations of Bates et al.

2017 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ihtiari Prasetyaningrum ◽  
C Cari ◽  
A Suparmi

<p class="Abstract">The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.</p>


2017 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ihtiari Prasetyaningrum ◽  
C Cari ◽  
A Suparmi

<p class="Abstract">The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.</p>


2014 ◽  
Vol 23 (10) ◽  
pp. 1450053 ◽  
Author(s):  
I. Inci

In this paper, the Morse potential is used in the β-part of the collective Bohr Hamiltonian for triaxial nuclei. Energy eigenvalues and eigenfunctions are obtained in a closed form through exactly separating the Hamiltonian into its variables by using an appropriate form of the potential. The results are applied to generate the nuclear spectrum of 192 Pt , 194 Pt and 196 Pt isotopes which are known to be the best candidate exhibiting triaxiality. Electric quadrupole transition ratios are calculated and then compared with the experimental data and the Z(5) model results.


2016 ◽  
Vol 94 (5) ◽  
pp. 501-506 ◽  
Author(s):  
Salah B. Doma ◽  
Fatma N. El-Gammal ◽  
Asmaa A. Amer

The ground state energy of hydrogen molecular ion [Formula: see text] confined by a hard prolate spheroidal cavity is calculated. The case in which the nuclear positions are clamped at the foci is considered. Our calculations are based on using the variational Monte Carlo method with an accurate trial wave function depending on many variational parameters. The results were extended to also include the HeH++ molecular ion. The obtained results are in good agreement with the most recent results.


Sign in / Sign up

Export Citation Format

Share Document