Maximal matchings in graphs with given minimal and maximal degrees

Author(s):  
B. Bollobás ◽  
S. E. Eldridge

In this note we determine the greatest lower bound of the number of independent edges in a graph in terms of the number of vertices, the minimal degree and the maximal degree. More generally we examine the greatest lower bound of the number of independent edges in a K-connected (or λ-edge-connected) graph with given number of vertices and given minimal and maximal degrees. These results extend those of Erdös and Pósa (3) and Weinstein (7). Our proof makes heavy use of Berge's slight extension of Tutte's characterization of graphs with 1-factors.

2021 ◽  
pp. 2150007
Author(s):  
J. B. Saraf ◽  
Y. M. Borse

Let [Formula: see text] be a connected graph with minimum degree at least [Formula: see text] and let [Formula: see text] be an integer such that [Formula: see text] The conditional [Formula: see text]-edge ([Formula: see text]-vertex) cut of [Formula: see text] is defined as a set [Formula: see text] of edges (vertices) of [Formula: see text] whose removal disconnects [Formula: see text] leaving behind components of minimum degree at least [Formula: see text] The characterization of a minimum [Formula: see text]-vertex cut of the [Formula: see text]-dimensional hypercube [Formula: see text] is known. In this paper, we characterize a minimum [Formula: see text]-edge cut of [Formula: see text] Also, we obtain a sharp lower bound on the number of vertices of an [Formula: see text]-edge cut of [Formula: see text] and obtain some consequences.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1668
Author(s):  
Eber Lenes ◽  
Exequiel Mallea-Zepeda ◽  
Jonnathan Rodríguez

Let G be a graph, for any real 0≤α≤1, Nikiforov defines the matrix Aα(G) as Aα(G)=αD(G)+(1−α)A(G), where A(G) and D(G) are the adjacency matrix and diagonal matrix of degrees of the vertices of G. This paper presents some extremal results about the spectral radius ρα(G) of the matrix Aα(G). In particular, we give a lower bound on the spectral radius ρα(G) in terms of order and independence number. In addition, we obtain an upper bound for the spectral radius ρα(G) in terms of order and minimal degree. Furthermore, for n>l>0 and 1≤p≤⌊n−l2⌋, let Gp≅Kl∨(Kp∪Kn−p−l) be the graph obtained from the graphs Kl and Kp∪Kn−p−l and edges connecting each vertex of Kl with every vertex of Kp∪Kn−p−l. We prove that ρα(Gp+1)<ρα(Gp) for 1≤p≤⌊n−l2⌋−1.


1973 ◽  
Vol 38 (2) ◽  
pp. 249-271 ◽  
Author(s):  
S. B. Cooper

The jump a′ of a degree a is defined to be the largest degree recursively enumerable in a in the upper semilattice of degrees of unsolvability. We examine below some of the ways in which the jump operation is related to the partial ordering of the degrees. Fried berg [3] showed that the equation a = x′ is solvable if and only if a ≥ 0′. Sacks [13] showed that we can find a solution of a = x′ which is ≤ 0′ (and in fact is r.e.) if and only if a ≥ 0′ and is r.e. in 0′. Spector [16] constructed a minimal degree and Sacks [13] constructed one ≤ 0′. So far the only result concerning the relationship between minimal degrees and the jump operator is one due to Yates [17] who showed that there is a minimal predecessor for each non-recursive r.e. degree, and hence that there is a minimal degree with jump 0′. In §1, we obtain an analogue of Friedberg's theorem by constructing a minimal degree solution for a = x′ whenever a ≥ 0′. We incorporate Friedberg5s original number-theoretic device with a complicated sequence of approximations to the nest of trees necessary for the construction of a minimal degree. The proof of Theorem 1 is a revision of an earlier, shorter presentation, and incorporates many additions and modifications suggested by R. Epstein. In §2, we show that any hope for a result analogous to that of Sacks on the jumps of r.e. degrees cannot be fulfilled since 0″ is not the jump of any minimal degree below 0′. We use a characterization of the degrees below 0′ with jump 0″ similar to that found for r.e. degrees with jump 0′ by R. W. Robinson [12]. Finally, in §3, we give a proof that every degree a ≤ 0′ with a′ = 0″ has a minimal predecessor. Yates [17] has already shown that every nonzero r.e. degree has a minimal predecessor, but that there is a nonzero degree ≤ 0′ with no minimal predecessor (see [18]; or for the original unrelativized result see [10] or [4]).


2018 ◽  
Vol 10 (05) ◽  
pp. 1850069
Author(s):  
Nader Jafari Rad ◽  
Elahe Sharifi

The independence number of a graph [Formula: see text], denoted by [Formula: see text], is the maximum cardinality of an independent set of vertices in [Formula: see text]. [Henning and Löwenstein An improved lower bound on the independence number of a graph, Discrete Applied Mathematics  179 (2014) 120–128.] proved that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] does not belong to a specific family of graphs, then [Formula: see text]. In this paper, we strengthen the above bound for connected graphs with maximum degree at least three that have a non-cut-vertex of maximum degree. We show that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] has a non-cut-vertex of maximum degree then [Formula: see text], where [Formula: see text] is the maximum degree of the vertices of [Formula: see text]. We also characterize all connected graphs [Formula: see text] of order [Formula: see text] and size [Formula: see text] that have a non-cut-vertex of maximum degree and [Formula: see text].


1986 ◽  
Vol 23 (04) ◽  
pp. 1038-1044
Author(s):  
A. P. Basu ◽  
S. N. U. A. Kirmani

A characterization of the exponential distribution in the class of all distributions which are HNBUE or HNWUE is proved. An upper (a lower) bound is obtained on the renewal function of a renewal process when the underlying distribution is HNBUE (HNWUE).


2015 ◽  
Vol 13 (03) ◽  
pp. 1550023 ◽  
Author(s):  
Paulo E. M. F. Mendonça ◽  
Marcelo A. Marchiolli ◽  
Gerard J. Milburn

For every N-qubit density matrix written in the computational basis, an associated "X-density matrix" can be obtained by vanishing all entries out of the main- and anti-diagonals. It is very simple to compute the genuine multipartite (GM) concurrence of this associated N-qubit X-state, which, moreover, lower bounds the GM-concurrence of the original (non-X) state. In this paper, we rely on these facts to introduce and benchmark a heuristic for estimating the GM-concurrence of an arbitrary multiqubit mixed state. By explicitly considering two classes of mixed states, we illustrate that our estimates are usually very close to the standard lower bound on the GM-concurrence, being significantly easier to compute. In addition, while evaluating the performance of our proposed heuristic, we provide the first characterization of GM-entanglement in the steady states of the driven Dicke model at zero temperature.


2018 ◽  
Vol 58 (5) ◽  
pp. 285 ◽  
Author(s):  
Jan Legerský

Parallel addition, i.e., addition with limited carry propagation has been so far studied for complex bases and integer alphabets. We focus on alphabets consisting of integer combinations of powers of the base. We give necessary conditions on the alphabet allowing parallel addition. Under certain assumptions, we prove the same lower bound on the size of the generalized alphabet that is known for alphabets consisting of consecutive integers. We also extend the characterization of bases allowing parallel addition to numeration systems with non-integer alphabets.


10.37236/3771 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Bence Csajbók

In a projective plane $\Pi_q$ of order $q$, a non-empty point set $\mathcal{S}_t$ is a $t$-semiarc if the number of tangent lines to $\mathcal{S}_t$ at each of its points is $t$. If $\mathcal{S}_t$ is a $t$-semiarc in $\Pi_q$, $t<q$, then each line intersects $\mathcal{S}_t$ in at most $q+1-t$ points. Dover proved that semiovals (semiarcs with $t=1$) containing $q$ collinear points exist in $\Pi_q$ only if $q\leq 3$. We show that if $t>1$, then $t$-semiarcs with $q+1-t$ collinear points exist only if $t\geq \sqrt{q-1}$. In $\mathrm{PG}(2,q)$ we prove the lower bound $t\geq(q-1)/2$, with equality only if $\mathcal{S}_t$ is a blocking set of Rédei type of size $3(q+1)/2$.We call the symmetric difference of two lines, with $t$ further points removed from each line, a $V_t$-configuration. We give conditions ensuring a $t$-semiarc to contain a $V_t$-configuration and give the complete characterization of such $t$-semiarcs in $\mathrm{PG}(2,q)$.


Sign in / Sign up

Export Citation Format

Share Document