scholarly journals New Bounds for the α-Indices of Graphs

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1668
Author(s):  
Eber Lenes ◽  
Exequiel Mallea-Zepeda ◽  
Jonnathan Rodríguez

Let G be a graph, for any real 0≤α≤1, Nikiforov defines the matrix Aα(G) as Aα(G)=αD(G)+(1−α)A(G), where A(G) and D(G) are the adjacency matrix and diagonal matrix of degrees of the vertices of G. This paper presents some extremal results about the spectral radius ρα(G) of the matrix Aα(G). In particular, we give a lower bound on the spectral radius ρα(G) in terms of order and independence number. In addition, we obtain an upper bound for the spectral radius ρα(G) in terms of order and minimal degree. Furthermore, for n>l>0 and 1≤p≤⌊n−l2⌋, let Gp≅Kl∨(Kp∪Kn−p−l) be the graph obtained from the graphs Kl and Kp∪Kn−p−l and edges connecting each vertex of Kl with every vertex of Kp∪Kn−p−l. We prove that ρα(Gp+1)<ρα(Gp) for 1≤p≤⌊n−l2⌋−1.

2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


2020 ◽  
Vol 36 (36) ◽  
pp. 38-46
Author(s):  
Oscar Rojo

Let $G$ be a graph with adjacency matrix $A(G)$ and let $D(G)$ be the diagonal matrix of the degrees of $G$. The $\alpha-$ index of $G$ is the spectral radius $\rho_{\alpha}\left( G\right)$ of the matrix $A_{\alpha}\left( G\right)=\alpha D\left( G\right) +(1-\alpha)A\left( G\right)$ where $\alpha \in [0,1]$. Let $T_{n,k}$ be the tree of order $n$ and $k$ pendent vertices obtained from a star $K_{1,k}$ and $k$ pendent paths of almost equal lengths attached to different pendent vertices of $K_{1,k}$. It is shown that if $\alpha\in\left[ 0,1\right) $ and $T$ is a tree of order $n$ with $k$ pendent vertices then% \[ \rho_{\alpha}(T)\leq\rho_{\alpha}(T_{n,k}), \] with equality holding if and only if $T=T_{n,k}$. This result generalizes a theorem of Wu, Xiao and Hong \cite{WXH05} in which the result is proved for the adjacency matrix ($\alpha=0$). Let $q=[\frac{n-1}{k}]$ and $n-1=kq+r$, $0 \leq r \leq k-1$. It is also obtained that the spectrum of $A_{\alpha}(T_{n,k})$ is the union of the spectra of two special symmetric tridiagonal matrices of order $q$ and $q+1$ when $r=0$ or the union of the spectra of three special symmetric tridiagonal matrices of order $q$, $q+1$ and $2q+2$ when $r \neq 0$. Thus the $\alpha-$ index of $T_{n,k}$ can be computed as the largest eigenvalue of the special symmetric tridiagonal matrix of order $q+1$ if $r=0$ or order $2q+2$ if $r\neq 0$.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


10.37236/415 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Charles Delorme ◽  
Guillermo Pineda-Villavicencio

The Moore bound constitutes both an upper bound on the order of a graph of maximum degree $d$ and diameter $D=k$ and a lower bound on the order of a graph of minimum degree $d$ and odd girth $g=2k+1$. Graphs missing or exceeding the Moore bound by $\epsilon$ are called graphs with defect or excess $\epsilon$, respectively. While Moore graphs (graphs with $\epsilon=0$) and graphs with defect or excess 1 have been characterized almost completely, graphs with defect or excess 2 represent a wide unexplored area. Graphs with defect (excess) 2 satisfy the equation $G_{d,k}(A) = J_n + B$ ($G_{d,k}(A) = J_n - B$), where $A$ denotes the adjacency matrix of the graph in question, $n$ its order, $J_n$ the $n\times n$ matrix whose entries are all 1's, $B$ the adjacency matrix of a union of vertex-disjoint cycles, and $G_{d,k}(x)$ a polynomial with integer coefficients such that the matrix $G_{d,k}(A)$ gives the number of paths of length at most $k$ joining each pair of vertices in the graph. In particular, if $B$ is the adjacency matrix of a cycle of order $n$ we call the corresponding graphs graphs with cyclic defect or excess; these graphs are the subject of our attention in this paper. We prove the non-existence of infinitely many such graphs. As the highlight of the paper we provide the asymptotic upper bound of $O(\frac{64}3d^{3/2})$ for the number of graphs of odd degree $d\ge3$ and cyclic defect or excess. This bound is in fact quite generous, and as a way of illustration, we show the non-existence of some families of graphs of odd degree $d\ge3$ and cyclic defect or excess. Actually, we conjecture that, apart from the Möbius ladder on 8 vertices, no non-trivial graph of any degree $\ge 3$ and cyclic defect or excess exists.


10.37236/212 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
László Babai ◽  
Barry Guiduli

Let $G$ be a graph on $n$ vertices with spectral radius $\lambda$ (this is the largest eigenvalue of the adjacency matrix of $G$). We show that if $G$ does not contain the complete bipartite graph $K_{t ,s}$ as a subgraph, where $2\le t \le s$, then $$\lambda \le \Big((s-1)^{1/t }+o(1)\Big)n^{1-1/t }$$ for fixed $t$ and $s$ while $n\to\infty$. Asymptotically, this bound matches the Kővári-Turán-Sós upper bound on the average degree of $G$ (the Zarankiewicz problem).


2021 ◽  
Vol 40 (6) ◽  
pp. 1431-1448
Author(s):  
Ansderson Fernandes Novanta ◽  
Carla Silva Oliveira ◽  
Leonardo de Lima

Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) −A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral if all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all Lintegral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.


10.37236/2598 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Tom Bohman ◽  
Ron Holzman ◽  
Venkatesh Natarajan

We give an upper bound on the independence number of the cube of the odd cycle $C_{8n+5}$. The best known lower bound is conjectured to be the truth; we prove the conjecture in the case $8n+5$ prime and, within $2$, for general $n$.


2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


In this paper, a new upper bound and a new lower bound for the spectral radius of a nοnnegative matrix are proved by using similarity transformations. These bounds depend only on the elements of the nonnegative matrix and its row sums and are compared to the well-established upper and lower Frobenius’ bounds. The proposed bounds are always sharper or equal to the Frobenius’ bounds. The conditions under which the new bounds are sharper than the Frobenius' ones are determined. Illustrative examples are also provided in order to highlight the sharpness of the proposed bounds in comparison with the Frobenius’ bounds. An application to linear invariant discrete-time nonnegative systems is given and the stability of the systems is investigated. The proposed bounds are computed with complexity O(n2).


2021 ◽  
Vol 45 (02) ◽  
pp. 299-307
Author(s):  
HANYUAN DENG ◽  
TOMÁŠ VETRÍK ◽  
SELVARAJ BALACHANDRAN

The harmonic index of a conected graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d-(v), where E(G) is the edge set of G, d(u) and d(v) are the degrees of vertices u and v, respectively. The spectral radius of a square matrix M is the maximum among the absolute values of the eigenvalues of M. Let q(G) be the spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the spectral radius of the matrix Q(G) have been extensively studied. We investigate the relationship between the harmonic index of a graph G and the spectral radius of the matrix Q(G). We prove that for a connected graph G with n vertices, we have ( 2 || ----n----- ||{ 2 (n − 1), if n ≥ 6, -q(G-)- ≤ | 16-, if n = 5, H (G ) || 5 |( 3, if n = 4, and the bounds are best possible.


Sign in / Sign up

Export Citation Format

Share Document