Graphs which are vertex-critical with respect to the edge-chromatic number

1987 ◽  
Vol 102 (2) ◽  
pp. 211-221 ◽  
Author(s):  
A. J. W. Hilton ◽  
P. D. Johnson

In this paper, multigraphs will have no loops. For a multigraph G, the least number of colours needed to colour the edges of G in such a way that no two edges on the same vertex of G have the same colour, is called the edge-chromatic number, or the chromatic index, of G, and denoted χ′(G). It is clear that if Δ(G) denotes the maximum degree of G, then Δ(G) ≤ χ′(G). If Δ(G) = χ′(G), then G is Class 1, and otherwise G is Class 2.

1986 ◽  
Vol 100 (2) ◽  
pp. 303-317 ◽  
Author(s):  
A. G. Chetwynd ◽  
A. J. W. Hilton

The graphs we consider here are either simple graphs, that is they have no loops or multiple edges, or are multigraphs, that is they may have more than one edge joining a pair of vertices, but again have no loops. In particular we shall consider a special kind of multigraph, called a star-multigraph: this is a multigraph which contains a vertex v*, called the star-centre, which is incident with each non-simple edge. An edge-colouring of a multigraph G is a map ø: E(G)→, where is a set of colours and E(G) is the set of edges of G, such that no two edges receiving the same colour have a vertex in common. The chromatic index, or edge-chromatic numberχ′(G) of G is the least value of || for which an edge-colouring of G exists. Generalizing a well-known theorem of Vizing [14], we showed in [6] that, for a star-multigraph G,where Δ(G) denotes the maximum degree (that is, the maximum number of edges incident with a vertex) of G. Star-multigraphs for which χ′(G) = Δ(G) are said to be Class 1, and otherwise they are Class 2.


2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


Author(s):  
Michał Dębski ◽  
Małgorzata Śleszyńska-Nowak

AbstractFor a graph G, $$L(G)^2$$ L ( G ) 2 is the square of the line graph of G – that is, vertices of $$L(G)^2$$ L ( G ) 2 are edges of G and two edges $$e,f\in E(G)$$ e , f ∈ E ( G ) are adjacent in $$L(G)^2$$ L ( G ) 2 if at least one vertex of e is adjacent to a vertex of f and $$e\ne f$$ e ≠ f . The strong chromatic index of G, denoted by $$s'(G)$$ s ′ ( G ) , is the chromatic number of $$L(G)^2$$ L ( G ) 2 . A strong clique in G is a clique in $$L(G)^2$$ L ( G ) 2 . Finding a bound for the maximum size of a strong clique in a graph with given maximum degree is a problem connected to a famous conjecture of Erdős and Nešetřil concerning strong chromatic index of graphs. In this note we prove that a size of a strong clique in a claw-free graph with maximum degree $$\varDelta $$ Δ is at most $$\varDelta ^2 + \frac{1}{2}\varDelta $$ Δ 2 + 1 2 Δ . This result improves the only known result $$1.125\varDelta ^2+\varDelta $$ 1.125 Δ 2 + Δ , which is a bound for the strong chromatic index of claw-free graphs.


10.37236/160 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel Král' ◽  
Douglas B. West

Let ${\cal G}$ be a class of graphs. A $d$-fold grid over ${\cal G}$ is a graph obtained from a $d$-dimensional rectangular grid of vertices by placing a graph from ${\cal G}$ on each of the lines parallel to one of the axes. Thus each vertex belongs to $d$ of these subgraphs. The class of $d$-fold grids over ${\cal G}$ is denoted by ${\cal G}^d$. Let $f({\cal G};d)=\max_{G\in{\cal G}^d}\chi(G)$. If each graph in ${\cal G}$ is $k$-colorable, then $f({\cal G};d)\le k^d$. We show that this bound is best possible by proving that $f({\cal G};d)=k^d$ when ${\cal G}$ is the class of all $k$-colorable graphs. We also show that $f({\cal G};d)\ge{\left\lfloor\sqrt{{d\over 6\log d}}\right\rfloor}$ when ${\cal G}$ is the class of graphs with at most one edge, and $f({\cal G};d)\ge {\left\lfloor{d\over 6\log d}\right\rfloor}$ when ${\cal G}$ is the class of graphs with maximum degree $1$.


10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 161 ◽  
Author(s):  
R. Vignesh ◽  
J. Geetha ◽  
K. Somasundaram

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.


Author(s):  
Mehmet Akif Yetim

We provide upper bounds on the chromatic number of the square of graphs, which have vertex ordering characterizations. We prove that [Formula: see text] is [Formula: see text]-colorable when [Formula: see text] is a cocomparability graph, [Formula: see text]-colorable when [Formula: see text] is a strongly orderable graph and [Formula: see text]-colorable when [Formula: see text] is a dually chordal graph, where [Formula: see text] is the maximum degree and [Formula: see text] = max[Formula: see text] is the multiplicity of the graph [Formula: see text]. This improves the currently known upper bounds on the chromatic number of squares of graphs from these classes.


Sign in / Sign up

Export Citation Format

Share Document