Copies of l∞ in an operator space

1990 ◽  
Vol 108 (3) ◽  
pp. 523-526 ◽  
Author(s):  
Lech Drewnowski

Let X and Y be Banach spaces. Then Kw*(X*, Y) denotes the Banach space of compact and weak*-weakly continuous linear operators from X* into Y, endowed with the usual operator norm. Let us write E⊃l∞ to indicate that a Banach space E contains an isomorphic copy of l∞. The purpose of this note is to prove the followingTheorem. Kw*(X*, Y) ⊃ l∞if and only if either X ⊃ l∞or Y ⊃ l∞.

1989 ◽  
Vol 32 (4) ◽  
pp. 450-458
Author(s):  
Takemitsu Kiyosawa

AbstractLet K be a non-trivial complete non-Archimedean valued field and let E be an infinite-dimensional Banach space over K. Some of the main results are:(1) K is spherically complete if and only if every weakly convergent sequence in l∞ is norm-convergent.(2) If the valuation of K is dense, then C0 is complemented in E if and only if C(E,c0) is n o t complemented in L(E,c0), where L(E,c0) is the space of all continuous linear operators from E to c0 and C(E,c0) is the subspace of L(E, c0) consisting of all compact linear operators.


1981 ◽  
Vol 89 (1) ◽  
pp. 129-133 ◽  
Author(s):  
N. D. Hooker

In 1973, V.I.Lomonosov introduced a new technique for finding invariant and hyperinvariant subspaces for certain classes of (continuous, linear) operators on complex Banach spaces. Recall that a closed subspace M of the Banach space X is called hyperinvariant for the operator T if S(M) ⊂ M for every operator S which commutes with T.


1988 ◽  
Vol 30 (2) ◽  
pp. 145-153 ◽  
Author(s):  
Volker Wrobel

In a recent paper M. Cho [5] asked whether Taylor's joint spectrum σ(a1, …, an; X) of a commuting n-tuple (a1,…, an) of continuous linear operators in a Banach space X is contained in the closure V(a1, …, an; X)- of the joint spatial numerical range of (a1, …, an). Among other things we prove that even the convex hull of the classical joint spectrum Sp(a1, …, an; 〈a1, …, an〉), considered in the Banach algebra 〈a1, …, an〉, generated by a1, …, an, is contained in V(a1, …, an; X)-.


2010 ◽  
Vol 17 (4) ◽  
pp. 787-794
Author(s):  
Vaja Tarieladze

Abstract For a Banach space X let 𝔄 be the set of continuous linear operators A : X → X with ‖A‖ < 1, I be the identity operator and 𝔄 c ≔ {A ∈ 𝔄 : ‖I – A‖ ≤ c(1 – ‖A‖)}, where c ≥ 1 is a constant. Let, moreover, (xk ) k≥0 be a sequence in X such that the series converges and ƒ : 𝔄 ∪ {I} → X be the mapping defined by the equality It is shown that ƒ is continuous on 𝔄 and for every c ≥ 1 the restriction of ƒ to 𝔄 c ∪ {I} is continuous at I.


1982 ◽  
Vol 25 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Sandy Grabiner

Throughout this paper, we suppose that T and R are continuous linear operators on the Banach spaces X and Y, respectively. One of the basic problems in the theory of automatic continuity is the determination of conditions under which a linear transformation S: X → Y which satisfies RS = ST is continuous or is discontinuous. Johnson and Sinclair [4], [6], [11; pp. 24–30] have given a variety of conditions on R and T which guarantee that all such S are automatically continuous. In this paper we consider the converse problem and find conditions on the range S(X) which guarantee that S is automatically discontinuous. The construction of such automatically discontinuous S is then accomplished by a simple modification of a technique of Sinclair's [10; pp. 260–261], [11; pp. 21–23].


1978 ◽  
Vol 30 (03) ◽  
pp. 518-530 ◽  
Author(s):  
Marc P. Thomas

Many results concerning the automatic continuity of linear functions intertwining continuous linear operators on Banach spaces have been obtained, chiefly by B. E. Johnson and A. M. Sinclair [1; 2; 3; 5]. The purpose of this paper is essentially to extend this automatic continuity theory to the situation of Fréchet spaces. Our motive is partly to be able to handle the more general situation, since for example, questions about Fréchet spaces and LF spaces arise in connection with the functional calculus.


2002 ◽  
Vol 31 (7) ◽  
pp. 421-442 ◽  
Author(s):  
S. Ludkovsky ◽  
B. Diarra

Banach algebras over arbitrary complete non-Archimedean fields are considered such that operators may be nonanalytic. There are different types of Banach spaces over non-Archimedean fields. We have determined the spectrum of some closed commutative subalgebras of the Banach algebraℒ(E)of the continuous linear operators on a free Banach spaceEgenerated by projectors. We investigate the spectral integration of non-Archimedean Banach algebras. We define a spectral measure and prove several properties. We prove the non-Archimedean analog of Stone theorem. It also contains the case ofC-algebrasC∞(X,𝕂). We prove a particular case of a representation of aC-algebra with the help of aL(Aˆ,μ,𝕂)-projection-valued measure. We consider spectral theorems for operators and families of commuting linear continuous operators on the non-Archimedean Banach space.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950201 ◽  
Author(s):  
Antonio Bonilla ◽  
Marko Kostić

If we change the upper and lower densities in the definition of distributional chaos of a continuous linear operator on a Banach space [Formula: see text] by the Banach upper and Banach lower densities, respectively, we obtain Li–Yorke chaos. Motivated by this, we introduce the notions of reiterative distributional chaos of types [Formula: see text], [Formula: see text] and [Formula: see text] for continuous linear operators on Banach spaces, which are characterized in terms of the existence of an irregular vector with additional properties. Moreover, we study its relations with other dynamical properties and present the conditions for the existence of a vector subspace [Formula: see text] of [Formula: see text], such that every nonzero vector in [Formula: see text] is both irregular for [Formula: see text] and distributionally near zero for [Formula: see text].


1992 ◽  
Vol 111 (1) ◽  
pp. 143-150 ◽  
Author(s):  
A. lger

AbstractLet K be a compact Hausdorif space, X a Banach space and C(K, X) the Banach space of all continuous functions : KX equipped with the supremum norm. A subset H of C(K, X) is pointwise weakly precompact if, for each t in K, the set Ht) = {(t):H} is weakly precompact. In this note we study the images of a bounded pointwise weakly precompact subset H of C(K, X) under several classes of linear operators on C(K, X).


Sign in / Sign up

Export Citation Format

Share Document